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1 Executive summary

Main progress The main progress of the second period (Month 13 - Month 18) is given
by the following items:

o Extended programming model. The extended programming model adds abilities
needed for practical applications, in particular the use case scenarios defined by the
industrial partners. These abilities include for Antidote an improved SQL interface
(called AQL), for Lasp, a port to the GRiSP embedded system boards together
with a task model that allows defining computations on networks of these boards,
and for Legion, an improvement of scalability of the peer-to-peer architecture, and
support for authorization and programming abstractions to reduce user-perceived
delays.

o Just-right consistency JRC). The JRC methodology supports the development of
heavy edge applications written using Antidote. In the second period, we worked
on tool support for JRC, in particular the CEC tool (Correct Eventual Consistency),
which has been released as a software artifact. The CEC tool aids the developer of
highly available distributed applications by evaluating the correctness according to
the JRC methodology (which is based on the CISE logic developed earlier). If the
program is incorrect, the CEC tool provides counterexamples to show incorrectness
and provides suggestions to the developer on how to fix the problem.

Main innovations with respect to state of the art During the second period, the
core programming innovation of LightKone with respect to existing edge architectures,
namely the convergent store, was strengthened in four ways. We added a task model to
Lasp and an SQL interface to Antidote, which both strengthen the computation aspect of
this innovation. We increased scalability of Legion and added the ability to reify CRDT
update operations to reduce perceived user latency, which both strengthen the consistency
aspect of this innovation.

Exploratory work In addition to the LiRA innovations mentioned above, we have done
the following exploratory work. First, we explore extensions and variations on the CRDT
concept in the context of a global-local view and referential integrity. Second, we explore
the future of edge computing: migration and autonomy, and how to build and verify dis-
tributed systems. Third, we present an interesting new use case, namely the Red Wedding
problem.

e Global-local view. This work defines a new model for shared objects, in which
objects have a local view (per thread) and a global view. Operations on the local
view are fast, and the model provides synchronization operations for the global
view. This approach is an alternative way to define shared objects, as compared to
CRDTs, and allows us to better explore the space of CRDT variants for LightKone.

e Ensuring referential integrity under (only) causal consistency. Referential integrity
(RI) of a distributed object store means that all references inside of structured data
are valid, both locally and in a distributed setting. We define a new CRDT, called
reference CRDT, that allows to enforce RI with only causal consistency and live-
ness.
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e Rethinking distributed programming. We reflect on the future of edge computing:
how migration and autonomy will become more important, and how to build sys-
tems so that optimization and verification become much easier (by thinking about
the use of declarative programming and about container interfaces). Finally, we
present a new, interesting use case for edge computing, namely the Red Wedding
problem, which has the particularity that it requires many stateful computations
directly at the edge.
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2 Introduction

The present deliverable D4.2 documents the progress made on programming models in
LightKone during the first six months of 2018 (Month 13 - Month 18). This document is
a supplement to Deliverable D4.1. While we have made an effort to make this document
self-contained, we do not repeat all the information of D4.1 and we recommend that D4.1
be read completely before reading D4.2.

Since the rewritten versions of D4.1 and D4.2 are submitted simultaneously, for clar-
ity we have consolidated in Deliverable D4.1 the main presentation of the three-year plan
on programming models (see Section 3.1) and the main presentation of the state of the
art comparison (see Section 5).

This document is structured as follows:

e Progress and plan (Section 3). This section gives the incremental progress for
Month 13 - Month 18, basically in two areas: the extended programming model
and just-right consistency (JRC).

e Software (Section 4). This section gives the links how to access the software de-
liverables and their documentation. The links for Lasp, Antidote, and Legion have
remained the same, however we have added links for the CEC tool (Correct Even-
tual Consistency), which supports JRC.

e State of the art (Section 5). This section gives in the incremental update to the state
of the art comparison given in Deliverable D4.1.

e Exploratory work (Section 6). This section gives the exploratory work performed,
i.e., the research-oriented work on programming models that is important for the
future evolution of LiRA.

e Published papers (Section 7). This section lists papers published by LightKone dur-
ing the period that support this deliverable. The content of the papers is available
on the LightKone web site.

e Other dissemination (Section 8). This section lists other dissemination activities
related to this work package, in particular invited talks and submitted papers by
LightKone that support this deliverable.

e Programming models and runtimes (Appendix A). This appendix gives a self-
contained presentation of the extended programming model as of Month 18, as
it appears in an invited chapter in a book.

e References (Appendix B). This section gives bibliographic references to published
articles outside of the project (either by partners before the project, or by third
parties) that support this deliverable’s work.

2.1 Summary of deliverable revision

This deliverable has been revised since its original submission to incorporate comments
and modifications requested by the European Commission Reviewers. The main changes
made to the deliverable are as follows:
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e The LightKone Reference Architecture (LiRA) is defined in Deliverable D3.1, as
requested by the Reviewers, and the programming model related progress of LiRA
in the second period is explained in the present document.

e Explanation of the need to define a new semantics is given in Deliverable D4.1.
As explained there, the LiRA programming model itself is an innovation that does
not exist in any of the major edge programming architectures. In brief, the new
semantics exists to ensure that developers using LiRA see no unpleasant surprises
and to pave the way for coherent future enhancements of LiRA.

e The impact and status of the programming model work in the adopted platforms is
explained in Section 3.1.

e The achieved results of work package 4 during the second period are fully de-
scribed in the present document and not redirected to scientific papers. Note that
this was already the case in the original submission of Deliverable D4.2, where
the scientific papers were included only as reference but not needed for evaluation.
The present document does not include the scientific papers; they are all available
on the project web site.

3 Progress and plan

3.1 Plan

Deliverable D4.1 has presented the three-year plan for work on programming models in
the project. Here we give an update to this plan at Month 18, with six months of additional
work. The main plan during this period is to target the programming model work toward
the needs of practical applications, and specifically the use cases. This is made clear by
the explanations in Section (a), below, regarding the Antidote functionality added (for
Scality and Guifi use cases), the Lasp port to the GRiSP boards and its extension with a
task model (for Gluk use case), and the Legion work to increase scalability and improve
user interaction quality (for mobile applications). These extensions were made in accord
with LiRA and its programming model semantics.

(a) Impact and success measure

A coherent programming model is necessary because the chief innovation of LiRA,
namely a convergent data store implemented in Antidote, Lasp, and Legion, combines
several aspects usually handled separately by developers, namely storage, communica-
tion, computation, and consistency. The only way to have confidence that these aspects
work well together is to define a unified semantics.

The impact of the unified semantics is difficult to quantify, since its success is marked
by a lack of problems that would appear if it would not exist. For example, if the store
would not have a clear consistency semantics, then fault injection would give erratic
behavior, where sometimes the system would behave incorrectly due to inconsistent data
between nodes.

However, it is possible to give a qualitative success measure for the semantics: Suc-
cess is achieved if the erratic behavior is not observed, or if observed, it is easily corrected
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since it is due to an error in how the semantics is implemented. Lack of a semantics leads
to situations where bugs are corrected locally with no global coherence. The semantics
ensures that bug corrections are globally coherent. Success is achieved if this coherence
is achieved.

(b) Status of the programming model work

It would be a significant effort to define a unified semantics for all LIRA components.
We do not have the resources for this in work package 4, but we have sufficient resources
to solve the essential problems. In the case of LightKone, the first essential problem
was to unify Lasp and Antidote, because these two components represent extremes in the
spectrum of edge computing (namely light edge, at the extreme edge with no cloud con-
nectivity, and heavy edge, with implicit cloud connectivity). We succeeded in defining a
simple semantics that covers both (given in Deliverable D4.1). Achieving this simplicity
took significant effort, but once achieved, the simplicity will continue to pay dividends
for the rest of the project.

Solving the problem for these two extremes goes far to ensure that any problems
encountered in intermediate cases will be much easier to solve. This is why, given the
limited resources of work package 4, we targeted first the unification of the extreme cases.
In general, it is important to solve difficult problems first, since if they are not solved, the
project’s evolution can make them even more difficult to solve in the future, until the
project reaches a crisis state where the goals cannot be achieved. We consider that the
achievement of the unified semantics for Lasp and Antidote is a necessary condition to
ensure the project will not fail because of incompatible component behavior. To attach a
percentage figure to this achievement, it is important to remember how we prioritize dif-
ficult problems, so that they are solved early. In terms of conceptual breakthroughs, we
can consider that we have achieved more than 50% of the results required for LightKone
success, even if we have spent less than 50% of the person-months. This gives us the
resources to help ensure the success of the rest of the project. In the third year, we will
focus on managing the connection between the semantics and the software artifacts, to
ensure that the coherence is maintained as the artifacts evolve and are used to implement
the use case scenarios. This will likely require extensions and modifications to the se-
mantics, but this is acceptable since the semantics will at all times exist, and its existence
is what guarantees coherence.

3.2 Progress

With respect to the first period, two main areas of progress were made with respect to
D4.1, namely for the extended programming model and for just-right consistency.

(a) Extended programming model

The extended programming model is an improved version of the basic programming
model released in Jan. 2018. Improvements were made in Antidote, Lasp, and Legion:

e For Antidote, the AQL interface was improved to increase coverage of SQL, in
particular for the select, update, and delete statemenets. The implementation work
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needed to support this, in particular the support for secondary indexes, is further
explained in Deliverable D6.2.

e For Lasp, the system was ported to GRiSP embedded system boards and a task
model was added to permit storing programs inside the Lasp storage. The imple-
mentation details of this support are explained in Deliverable D5.2.

e For Legion, scalability was improved in the peer-to-peer architecture, security was
added (to prevent unauthorized actions), and programming abstractions were added
to reduce perceived user delay. This is explained further in Deliverable DS5.2.

Section 3.3 gives more information on these improvements.

(b) Just-right consistency (JRC)

Just-right consistency is a programming methodology for Antidote, to maintain applica-
tion invariants despite concurrency and partitioning problems. This was introduced in
Deliverable D4.1 and is explained there. Work on tool support for JRC continued in the
second year. There is continued work on the CEC tool (Correct Eventual Consistency), to
provide suggestions to the user how to fix the program when verification fails. We started
work on a second tool, called Soteria, to verify that the state update for CRDTs satisfies
the monotonicity properties for correct operation. Section 3.4 gives more information on
these improvements.

3.3 Extended programming model

The extended programming model was described in an invited chapter in an upcoming
book on Ultrascale Computing Systems, which is being organized by the NESUS project.
The chapter focuses specifically on General Purpose Computations at the Edge and is
given in Appendix A. This text gives a presentation of the work written concisely and
clearly for a general audience, so we include it as part of the present document. This text
gives a snapshot as of April 2018 of the implemented LightKone technology for edge
computing, including synchronization-free computing with CRDTs and hybrid gossip.
However, it is written in order to be up-to-date with the progress during the first six
months of 2018.

3.4 Just-right consistency (JRC)

To help the developer apply Just-Right Consistency, we are developing tool support for
formally verifying applications. D4.1 and D6.1 explain the beginning of this work on
tools, namely the CISE proof system, to prove that the application satisfies a specification
in first-order logic. We present here the progress of this work as of Month 18, for the CEC
tool (Correct Eventual Consistency) and a new tool called Soteria.

(a) Correct Eventual Consistency Tool

Reasoning about the correctness of distributed applications while ensuring high availabil-
ity is a non-trivial task. The CEC (Correct Eventual Consistency) tool described in D6.1,
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is geared towards helping the developers reason about the correctness of their designs.
The tool is based on CISE logic developed by Gotsman et. al. [5].

The technical report [6], mentioned in D6.1, was based on evaluating the tool. The
report highlighted the lack of proper debugging support when verification condition fails.
The tool has been evolved to generate counter examples which are comprehensible to the
user. The tool helps the user identify the statement which failed, and provides the values
of the variables in that statement for the failed verification condition. It also provides val-
ues for the parameters of the procedure call. These two informations can help developers
identify the issue with their specification.

As a next step, the counter example obtained from the previous step is used to pro-
vide token suggestions to the user. Currently we are looking into providing inequality
suggestions, suggesting which parameters if not equal can help ensuring correct execu-
tion. The previous method of token suggestion was using a brute force approach, where
in all pair-wise combinations of the parameters involved were considered and tests were
run for all of them. In the new approach, we utilise the counter example and sees the
parameters which share the same value. We then enforce an inequality constraint on that
particular pair of parameters and rerun the verification condition with those restrictions.
If the verification succeeds, we suggest them to the user. So far our results are match-
ing the brute force approach employed earlier, but taking less time since we do not run
through all possible combinations.

Consider an example of a bank account having just two simple operations - deposit
and withdraw. The tool runs the three checks explained in D6.1. The third check, the sta-
bility check for withdraw(account_id, amount) and withdraw(account_id, amount) will
fail and produce a counter example indicating the values of two account_id’s being equal.
That means the withdraw operation does not preserve its precondition and it needs some
concurrency control token. So the tool enforces an inequality constraint between the ac-
count_id’s and checks whether the verification succeeds. In this case, it is a yes and so
the tool adds it to the list of token suggestions. For a developer that means the withdraw
operations operating on one account_id need to synchronize.

The run-time of the tool is available in a github repository given in Section 4.4. Some
examples are provided in the folder specifications/applications. There is a readme in the
repository which talks about how to use the tool and how to write specifications.

(b) Soteria

The previous tool talks about the design of distributed applications when the effects of
operations are propagated. Another design in popular use in distributed applications
is when the whole state is propagated to other replicas. There are currently no tools
available to enable the developer to reason about those types of applications. To address
this issue of state-based update propagation, we are working on building a tool named
Soteria.

For ensuring convergence in state-based update propagation scenario, we rely on
state-based CRDTs [1]. State-based CRDTSs ensue convergence if all the operations are
monotonically non-decreasing and there is a least upper bound for any two states. The
developer needs to define two operations:

e the merge function, which specifies how to merge the incoming state with the cur-
rent state in the replica; and
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e the comparison function to check the properties for a semi-lattice.

To check whether the application operations and merge conform to a semi-lattice, the
tool does the following checks:

e whether each update is monotonically non-decreasing;
e whether the merge function provides the least upper bound of two states;

e whether each update and merge upholds the invariant during a sequential operation;
and

e whether the stability of the precondition of merge (precondition of merge is essen-
tially the set of reachable states) under each update and merge itself.

The specification input for the tool is given in Boogie [2].
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4 Software

The extended programming model is released as three software artifacts, namely Lasp,
AntidoteDB, and Legion. The software has been improved since Month 12, but is re-
leased in the same Web locations.

We add a new software artifact, the CEC tool, which supports the Just-Right Consis-
tency methodology.

4.1 Lasp system

Documentation https://lasp-lang.org

Code repository https://github.com/lasp-lang

4.2 AntidoteDB system
Documentation http://antidotedb.org

Code repository https://github.com/SyncFree/antidote

4.3 Legion system

Documentation https:/legion.di.fct.unl.pt/

Code repository https://github.com/albertlinde/Legion

4.4 CEC tool (Correct Eventual Consistency)

Documentation See the folder specifications/applications in the code repository.

Code repository https://github.com/LightKone/correct-eventual-consistency-tool
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5 State of the art

The main presentation of the state of the art in programming models for edge computing
was given in D4.1, and the main LightKone innovations with respect to state of the art
architecture are presented in that deliverable. In the present section, we explain the incre-
ment to these innovations due to the progress made in the second period. This progress
has strengthened the main innovation of LightKone, namely the convergent data store, in
the following ways:

e The Lasp programming model was extended with a task model, allowing to do
computations inside the Lasp system. This increases expressivity of the computa-
tion aspect of the convergent data store.

e The Antidote programming model was extended with an SQL interface. This in-
creases expressivity of the computation aspect of the convergent data store.

e The Legion programming model was extended to increase scalability, to add au-
thorization, and to reduce perceived use delay by reifying the CRDT update oper-
ations. This strengthens the consistency aspect of the convergent data store.

e The CEC tool in the JRC methodology increases the usefulness of this method-
ology by giving advice to developers on correcting errors. This strengthens the
consistency aspect of the convergent data store.

6 Exploratory work

We give the exploratory work done from Month 13 to Month 18.

6.1 Global-local view: scalable consistency for concurrent data types

We propose a new model for shared objects which leverages the different views of an ob-
ject, called the global-local view model (published in EuroPar 2018, see Section 7.1). In
this model, each thread has a local view of the object which is isolated from other threads.
Threads update and read the local view. The local updates, though visible in a local view,
are made visible on a global view only after an explicit two-way merge operation is per-
formed. The other threads observe these changes once they synchronize their local view
with the global view by the merge operation. As the local view is non-shared, the local
updates can be executed without requiring synchronization, thus enabling better perfor-
mance, albeit at the expense of linearizability. We discuss the design of several datatypes
and evaluate their performance and scalability compared to linearizable implementations.

In addition to the local operations, the model also provides synchronous operations
on the global view. Consider, for example, a queue where the enqueues have been exe-
cuted on the local view. To guarantee that the elements are dequeued only once, dequeues
are executed atomically on the global view. We call the operations that perform only on
local view, weak operations and those on the global view, strong operations. Combining
operations on the global and the local views, we can build data types with customizable
semantics on the spectrum between sequential and purely mergeable data types. Merge-
able data types provide only weak and merge operations; hybrid mergeable data types
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offer both weak and strong operations. An application that uses a hybrid mergeable data
type may use weak updates when a non-linearizable access is sufficient and can switch
to use only strong operations when stronger guarantees are required.

6.2 Ensuring referential integrity under (only) causal consistency

Referential integrity (RI) is an important correctness property of a shared, distributed
object storage system. It means that all references in structured data are valid, both
locally and in a distributed setting. Updating a distributed database while maintaining RI
is nontrivial. It is sometimes thought that enforcing RI in a distributed system requires
a strong form of consistency. We argue that causal consistency with liveness suffices to
maintain RI. We support this argument with pseudocode for a reference CRDT data type
that maintains RI under causal consistency. QuickCheck has not found any errors in the
model. This work was published and presented at the PaPoC workshop [7]. The work is
important to LightKone because it makes a connection between CRDTSs and referential
integrity, which may be important for future extensions to our CRDT storage.

(a) Defining the RI problem

Consider a shared store (memory) of objects, and a reference data type for linking ob-
jects in the store. Intuitively, the referential integrity (RI) invariant states that if some
source object contains a reference to some target, then the target “exists,” in the sense
that the application can access the target safely. A referenced object must not be deleted;
conversely, when an object cannot be reached by any reference, deleting it is allowed.

We say that an object is unreachable if it is not the target of a reference, and never
will be in the future (the latter clause is problematic under weak consistency). The RI
property that we wish to achieve is the following:

e Safety: An object can be deleted only if it is unreachable.

e Liveness: Unreachability of an object will eventually be detected.
In a storage system where the application can delete objects explicitly, the programmer
must be careful to preserve the RI invariant. Our paper exhibits a reference data type
demonstrating that causal consistency (with progress guarantees) suffices to ensure RI
and to implement a safe deletion operation. The solution uses a form of reference count-
ing (designed for distributed systems), called reference listing [3, 4, 8]. Objects with a
non-empty reference list must not be deleted.

(b) Sketch of solution

A source object contains an instance of a data type called outref for every attribute that
refers to another object. A (target) object is associated with exactly one inref. The inref
identifies the currently-known sources pointing to this target. The only application-level
operations supported by inref are initialisation and testing whether deleting the target is
allowed.

A (source) object contains any number of distinct outrefs. An outref supports the
following application-level operations: (i) initialisation, (ii) assigning from another out-
ref, (iii) assigning null (we assume that deleting an object first automatically nulls out
all of its outrefs), and (iv) invoking its target(s). To support concurrency, assigning an
outref behaves much like a Multi-Value Register [9]. Assignment overwrites its previous
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value; when concurrent assignments occur, the resulting reconciled value contains all the
concurrently-assigned values.

Our algorithm design hinges on two principles that can be implemented assuming
only causal consistency: (1) before an outref is assigned to a source object (in initialisa-
tion or assignment), we ensure that the corresponding inref has been added to the target
object; importantly, causal consistency is enough to enforce this ordering of updates.
(2) To delete a target, we require that no inref exists, nor will later be added, for this
target. This property can be checked by well-known mechanisms which rely only on
causal consistency and progress guarantees [10]. The combination of these properties is
sufficient to ensure RI as defined above. For more detail, we refer to the paper [7].

6.3 Rethinking distributed programming (continued)

This section continues the same-named section from Deliverable D4.1 with five addi-
tional exploratory papers. These papers investigate different aspects of edge comput-
ing: two papers that explore future architectures for edge computing, a paper on how
to use declarative programming for distributed computing, a paper on verification for
container-based components, and a paper on an interesting new use case for edge com-
puting, namely the Red Wedding problem.

(a) Towards enabling novel edge-enabled applications

This paper gives a perspective on the future of edge computing, in which applications can
move freely between edge and cloud. The paper identifies the key research challenges
that this implies: decentralized scalable resource management, migration, replication
and decomposition of computational tasks, partial replication, lightweight and scalable
monitoring, autonomic management for resources and workloads, and cryptography for
data privacy and integrity. This paper is published as a technical report (see Section 8.3).

(b) A case for autonomic microservices in the edge

This paper is a companion to the above paper and argues that edge computing will lead
to a much greater need for autonomic services that manage computational and data re-
sources. An important requirement is elastic monitoring, which itself becomes part of
the edge infrastructure. This paper is submitted to SOCC 2018 (see Section 8.2).

(¢) A software system should be declarative except where it interacts with the real
world

This paper is part of an ongoing effort to understand precisely the concept of synchronization-
free, as used in the SyncFree and LightKone projects. As part of this effort, we determine

a design principle for software systems that lets us understand where declarative program-
ming paradigms (such as logic and functional programming) should be used. Basically,
declarative programming should be used everywhere except with real-world interactions,
which are defined as interactions in which wall-clock time is important. This paper is
published in LPOP 2018 (see Section 7.2).
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(d) Verifying interfaces between container-based components

Container-based programming has emerged as a basic technology for building distributed
applications, and is therefore important for edge applications. An important requirement
is the ability to compose black-box components, such that the composition preserves
component invariants. One way to make progress in this area is to leverage work on type
systems, because type systems are already doing partial verification of some invariants.
This paper is submitted to HotEdge 2018 (see Section 8.2).

(e) Towards a solution to the Red Wedding problem

An important real-world scenario for edge applications is stateful computations at the
edge. Spikes in stateful edge computations occur because of real-world events, such as
the Red Wedding episode of Game of Thrones, which caused many people to simultane-
ously update information stored at the edge. A realistic edge platform has to be able to
handle such spikes and this paper proposes a design for such a platform. This paper is
published in HotEdge 2018 (see Section 7.2).
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Chapter 1
Programming Models and Runtimes

Ali Shoker!, Jodo Leitdo?, Peter Van Roy’>, and Albert van
der Linde*

1.1 Towards General Purpose Computations at the Edge

Originally designed to exploit the power of multi-core processors through virtual-
ization, Cloud Computing [1] has changed over the past decade to support ultrascale
computations. The new paradigm, often called aggregation, collects a large number
of resources in a pool to form a single service with huge storage and computation
capacities. Unfortunately, with the huge amounts of data generated via modern ap-
plications, the cloud center has become a bottleneck and a single point of failure.
This advocated an extended paradigm, called Edge Computing, that brings part of
the data storage and computation closer to the user. The benefits are plenty: reduced
delays, high availability, low bandwidth usage, improved data privacy, etc. In this
section, we introduce recent advances in edge computing that makes the coordina-
tion of edge networks synchronization-free and convergent. We address the main
challenges facing applications on the data management and communication aspects.
The section also provides convenient runtime environments for different categories

of edge computing scenarios”.

1.1.1 Motivation

Edge Computing offers the opportunity to build new and existing ultrascale appli-
cations that take advantage of a large and heterogeneous assortment of edge devices
and environments. Fully realizing the opportunities that are created by edge com-
puting, requires dealing with a set of key challenges related with the high number of
different components that compose such systems and the interactions among them.
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In this work, was address the main challenges on the communication and data man-
agement levels allowing for robust communication and available data access.

On the communication frontend, the fact that applications are composed of com-
ponents running in heterogeneous environments requires robust and efficient solu-
tions for tracking these components. This implies the development of highly robust
and adaptive membership services and mechanisms that allow efficient communica-
tion among these components. Among the promising class of gossip-based commu-
nication protocols are those “hybrid” ones [2, 3], in which payloads are propagated
though an elected logical spanning tree, supported by lightweight meta-data across
the graph for recovery (reconstructing another logical tree) under failures.

The consequences of such hostile environments are also present on the data
management level. Since application components run on different administrative do-
mains scattered across heterogeneous environments, communication links between
these components can be disrupted by external factors (i.e, network partitions) fre-
quently. This implies that the progress of computations executed across different
application components cannot depend on continuous communication with other
components, or in other words, cannot depend on synchronous interactions. This
advocates the use of synchronization-free (i.e., sync-free) programming abstractions
backed by sync-free data propagation and replication techniques. An interesting ap-
proach is to make use of Conflict-free Replicated Data Types (CRDTs) [4, 5, 6] that
are proven abstractions designed to acheive convergence under such conditions (this
is explained later in more details).

Finally, heterogeneity is the norm in ultrascale edge applications, and it exists
at various layers: executiuon environments, communication media, data sources, op-
erating systems, programming languages, etc. Addressing this heterogeneity can be
achieved by leveraging on different run-time supports and frameworks that provide a
more unified vision of resources to application developers. These different run-time
and frameworks will have to inter-operate through the use of standard protocols and
common data representation models.

In the following we refine the challenges associated with tapping on edge com-
puting to design ultrascale applications, and discuss enabling technology that paves
the way to tackle these challenges, and finally discuss a set of run-time and frame-
work support that can simplify the design of such applications.

1.1.2 Edge Computing Opportunities

Edge Environments. To the contrary of cloud computing where the data and com-
putation is centralized at the cloud data centers, the edge computing paradigm en-
compasses a large number of highly distinct execution environments that are defined
by the network topology, connectivity, locality, and the storage and computation ca-
pacities of the devices used. In particular, we identify we identify the following
interesting edge environments:

e Fog Computing: a variant of cloud computing where the cloud is divided into
smaller cloud infrastructures located in the user vicinity. In such environments,



Ultrascale Computing Systems 3

each fog cloud often serves as an individual cloud, although the data can even-
tually be incorporated with other fog clouds [7, 8].

e Mobile Cloudlets: small cloud datacenters that are located at the edge and are
tailored to support mobile applications with powerful computations and low re-
sponse times, e.g., in ISP gateways or 5G towers [9, 10, 11].

e Hardware-based Clouds: self-contained devices, such as routers, gateways, or
set-up boxes, that are enriched with additional computational and storage capa-
bilities like [12, 13].

e Peer-to-Peer (P2P) Clouds: these environments try to leverage existing devices,
e.g., user mobiles, laptops, and computers in volunteer networks, aiming to co-
operate towards achieving a common goal [14, 15, 2].

e Things and Sensor Network Clouds: resource constrained devices, e.g., Internet
of Things devices, sensors, and actuators, capable of performing some compu-
tations on data without accessing or delegating to the (possibly unreachable)
cloud center [16].

All of these different scenarios are characterized by having highly heteroge-
neous devices in terms of processing power and memory, but also regarding their
connectivity to the backbone of the Internet or even their up-times (being continu-
ally running or being operating for only small periods of time). These different de-
vices naturally, run different operating systems, from general purpose Linux based
operating systems in the case of servers in cloud and private infrastructures, to pro-
prietary operating systems in the case of set-up boxes, mobile operating systems,
general purpose multi-user operating system or even single process operating Sys-
tems in the case of small sensors and actuators. Gathering the capacity of devices
with very different properties is highly challenging, and devising solutions that can
exploit devices located in different edge devices brings additional challenges. Next
we will discuss some of the key high level challenges in tapping the potential of the
edge.

Challenges at the Edge Despite the diversity of edge computing environments,
components, and properties, the major challenges are common to most of the sce-
narios. In particular, we recognize the following four challenges:

Scalability. One of the reasons to move the data and computation off the cloud
data center to the edge is to reduce the I/O overload on the cloud and avoid bot-
tlenecks related with the limited network capability connecting clients to the cloud
infrastructures. Nevertheless, this raises another challenges on handling the data
and computation in a distributed way especially in ultra-scale systems composed of,
potentially, many data centers and thousands of edge devices. This scale requires
special techniques across the data, computation, and communication planes. As cap-
tured by the CAP theorem [17], and because scaling out will increase the potential
for network portions, link failures, and arbitrary communication delays, ensuring
availability—as an essential requirement for most applications including novel edge
applications—requires relaxing the consistency model employed in the design and
implementation of these solutions. Consequently, the computation should also be
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decentralized and coordinated to achieve the common goals of the entire system. Fi-
nally, the communication middlewares should also scale to afford a high number of
nodes, e.g., through asynchronous, P2P, or gossip protocols.

Interoperability. Considering the edge categories discussed above, one can no-
tice the notable diversity level of the devices and platforms used within the same or
across edge clouds. This brings interoperability challenges if all components shall
communicate with each others, thus requiring well studied interfaces and possibly
introducing a common layer that all components can understand without compro-
mising the characteristics deemed essential.

Resilience. While cloud datacenters use high quality equipment for the network
and devices, edge computing often use commodity equipment that are far from per-
fect regarding failures. The problem is extrapolated with edge network problems that
are likely to be loosely connected, mobile, and hostile. This threatens the quality of
the service and makes the data and communication components even more complex.
That said, one must consider the performance as well as the cost trade-offs (being a
major factor due to the constrained resources).

Security and Privacy. Given the heterogeneity of the edge applications, security
and privacy measures must be analyzed and tackled individually. However, in gen-
eral, it is desired to find a common security layer or security measures that govern a
wide range of applications. Security and privacy on the edge need to be addressed
on the infrastructure and data levels. The former can be deployed at the communi-
cation or network layer, ranging from establishing secure connections to enforcing
secure group dynamics, and cover several dimensions including data integrity, data
privacy, or resilience to DoS attacks. On the other hand, edge applications often
deal with sensitive data which likely requires lightweight encryption and data san-
itization techniques to control the disclosure of such data. These may also include
secret-sharing, anonymization, noise addition or partitioning, etc., depending on the
specific security and functional requirements of the implementations.

Use Cases. As discussed in the edge environments, edge computing supports a
plenty of applications and use-cases. In this section, we focus on three categories in
which most of the use-cases lie:

e Time series applications. This category spans a multitude of applications with
the popularity of IoT. The scenario is often a type of time series where data is
generated by the 0T devices, e.g., sensors, and pushed to the edge devices to get
stored, aggregated, and partially computed. The aggregated data is then pushed
to the center of the cloud for further handling. The data-flow can sometimes be
in the opposite sense if actuator devices exist; in this case, the processed data in
the cloud is pushed back to the actuators to do some action. Consequently, this
scenario represents a hybrid model of light and heavy devices, different types of
networks (e.g., Zig-bee, WIFI, WAN, etc), as well as data-flow direction.

e Mobile edge applications. This category covers all the applications in which
devices are mobile and public. This makes the model very hostile as link failure
and delays are expected, and the availability of nodes cannot be guaranteed (e.g.,



Ultrascale Computing Systems 5

a mobile device can be switched off). The communication in such use cases does
not follow a particular data-flow pattern, but it is often P2P or gossip-based due
to the dominant dynamic graph-like network of nodes. In such applications, de-
vices have moderate storage and computation resources that makes the interac-
tion symmetric. Obviously, the main challenges in such use-cases are reseliance
and availability. In some cases, access points, towers, or routers with more ca-
pacities can assist in storage, computation, and communication, which can be
used as third party authority when needed.

e Highly available databases. This category is a natural evolution of scalable
databases in cloud and cluster systems. The intuition is to replicate the database
geographically, brining replicas or cache servers closer to the user. In this sce-
nario, devices are at least commodity computers or servers with non-scarce ca-
pacities, and then network is often the Internet. In addition to availability, the
challenge in such use-cases is to tolerate network partitions and optimize data
locality (especially when partial replication is used). These scenarios are close
to Fog Computing and Cloudlets with the difference that all node must work as
a single (often loosely) coordinated system.

1.1.3 Enabling Technologies for the Edge

Synchronization-Free Computing. Edge devices and edge networks are both un-
reliable. This follows both from their design, e.g., they are low-power systems that
are often offline, and from the nature of the edge itself, e.g., it is directly involved
with real world activities, such as in Internet of Things. Despite this unreliability, we
would like to perform computations directly on the edge.

To perform computations directly on the edge, we need distributed data struc-
tures and operations that tolerate the unreliability of the edge. Synchronization-free
computing fits the bill because of its very weak synchronization requirement. A
prominent example is Conflict-free Replicated DataType (CRDT), which is a repli-
cated data type that is designed to support temporary divergence at each replica,
while guaranteeing that when all updates are delivered to all replicas of a given in-
stance, they will converge to the same state. (More details about CRDTs can be
found in Chapter 4 or by referring to [4, 5, 6].) CRDTs naturally tolerate node prob-
lems, namely nodes going offline and online and node crashes, and network prob-
lems, namely partitions, message loss, message reordering, and message duplication.
Node crashes are tolerated as long as the desired state exists on at least one correct
node. The following results on CRDT computations are summarized from [18].

CRDT Definition. For the purposes of this section, we define a CRDT instance
to be a replicated object that satisfies the following conditions:

e Basic structure: It consists of n replicas where each replica has an initial state, a
current state, and two methods, query and update, that each executes at a single
replica.

e Eventual delivery: An update delivered at some correct replica is eventually
delivered at all correct replicas.

e Termination: All method executions terminate.
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e Strong Eventual Consistency (SEC): All correct replicas that have delivered the
same updates have equal state.

This definition is slightly more general than the one given in the original report
on CRDTs [4]. In that report, an additional condition is added: that each replica
will always eventually send its state to each other replica, where it is merged using
a join operation. This condition is too strong for CRDT composition, since it no
longer holds for a system containing more than one CRDT instance. We explain the
conditions needed for CRDT composition in the next section.

CRDT Composition. The properties of CRDTs make them desirable for compu-
tation in distributed systems. It is possible to extend these properties to full programs
where the nodes are CRDTs and the edges are monotonic functions. To achieve this,
it is sufficient to add the following two conditions on the merge schedule, i.e., the
sequence of allowed replica-to-replica communications:

e  Weak synchronization: For any execution of a CRDT instance, it is always true
that eventually every replica will successfully send a message to each other
replica.

e Determinism: Given two executions of a CRDT instance with the same set of
updates but a different merge schedule, then replicas that have delivered the
same updates in the two executions have equal state.

The first condition allows each CRDT instance to send the merge messages it
requires to satisfy the CRDT conditions. The second condition ensures that the exe-
cution of each CRDT instance is deterministic, which makes it a form of functional
programming. We remark that SEC by itself is not enough for this, since the states
of replicas in different executions that have delivered the same updates can be dif-
ferent, even though SEC guarantees that they are equal in the same execution. In
practice, enforcing determinism is not difficult but it depends on the type of the
CRDT instance. Article [18] explains how to do it for a set that has add and remove
operations (the so-called Observed-Remove Set).

We define a CRDT composition to be a directed acyclic graph where each node
is a CRDT instance, and each node with at least one incoming edge is associated
to a function of all incoming edges arranged in a particular order. Given the first
of the two conditions introduced above, we can show that the execution of a CRDT
composition satisfies the same properties as a single CRDT instance. If the second
condition is added, then the CRDT composition behaves like a functional program.

Hybrid Gossip Communication. Gossip is a well known and effective ap-
proach for implementing robust and efficient communication strategies on highly
dynamic and large-scale system [15, 3]. In its most simple form, in a gossip protocol,
each node periodically interacts with a randomly selected node. In this interaction
both exchange information about their local state (and potentially merge it). Since
all nodes do this in parallel and in an independent fashion, after approximately one
round-trip time, all nodes will have performed, at least, one merge step, and on av-
erage two merge steps (one initiated by the node itself and another initiated by some
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peer). We usually call this period of interactions a cycle. After a small number of cy-
cles, the network converges to a globally consistent vision of the system state. This
simple approach cab be used, for instance to compute aggregate functions, such as
inferring the network size or load. Interestingly, this can also be used for other, and
more complex, purposes such as managing the membership of large-scale system,
which implies building and maintaining an overlay (i.e, logical) network topology,
in a way that is both robust and scalable, but also to support robust data dissemination
in such systems.

Gossip-based approaches have been shown to be highly resilient to network
faults, due to the inherent redundancy that its core to the design of gossip protocols.
Unfortunately, this redundancy also leads to efficiency penalties. Hybrid gossip ad-
dresses this aspect of gossip protocols. In a nutshell, the key idea of hybrid gossip is
to leverage on the feedback produced by previous gossip interactions among nodes,
such that an effective and non-redundant structure of communication can naturally
emerge. The topology of this emergent structure depends on the computation being
performed by nodes, and it enables nodes significantly improve the communication
and coordination cost by restricting the exchange of information among node to the
logical links that belong to this structure, lowering the among of redundant commu-
nication.

Key to maintaining the fault-tolerance of gossip protocols in hybrid gossip is the
use of the remaining communication paths among nodes (those that are not selected
to be part of the emergent structure) to convey minimal control information. This
control information enables the system to detect (and recover) from failures that
might affect the emergent structure. Moreover, in highly dynamic scenarios, the
additional communication paths allow nodes to fall back to a pure gossip strategy,
for instance, when there are a significant number of concurrent nodes crashes or
network failures.

Interesting, hybrid gossip solutions naturally allow different components of the
system to operate using either the emergent structure or a pure gossip approach si-
multaneously. Hence, components of the system that are in stable conditions (i.e,
low membership dynamics and low failures) will operate resorting to the emergent
structure, while components of the system that are subjected to high churn or net-
work/node failure will fallback to use pure gossip while still being able to inter-
operate with the components using the emergent structure.

Therefore, hybrid gossip approaches enable applications to, effectively and trans-
parently, benefit from the resilience of a pure gossip approach entwined with the ef-
ficiency of a gossip approach that leverages an emergent communication topology.
The hybrid gossip approach has been introduced in [2, 19]. The Plumtree protocol
in particular, shows how to build an efficient and robust spanning tree connecting
large number of nodes to support reliable application-level broadcast. This solution
is currently used in industry, for example, the Basho Riak database uses it to manage
the underlying structure of its ring topology which is used to map data object keys
into nodes (through consistent-hashing).
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1.1.4 Runtime for Edge Scenarios

Above we have discussed enabling technologies that can be leveraged to build new
and exciting edge applications in the ultrascale domain. Tapping into these enabling
technologies can however, be a complex task for developers. Therefore, it becomes
relevant to provide frameworks, tools, and other artifacts that exploit these technolo-
gies in a coherent way, providing high level abstractions to programmers that aim at
developing their ultrascale edge applications. We now discuss some existing runtime
support tools and frameworks that have been recently proposed to this end.

Antidote. Antidote is a geo-replicated key-value store, designed for providing
strong guarantees to applications while exhibiting high availability, thus providing
a good compromise in the consistency versus availability trade-off in the design
of cloud databases. These proprties make Antidote a strong candidate as an edge
database especially when edge nodes have non-scarce resources (e.g., commodity
Servers).

In particular, some cloud databases adopt a strong consistency model by en-
forcing a serialization in the execution of operation, leading to high latency and
unavailability under failures and network partitions. Other databases adopt a weak
consistency model where any replica can execute any operation, with updates being
propagated asynchronously to other replicas. This approach leads to low latency and
high availability even under network partition, but replicas can diverge. On the other
hand, Antidote allows any operation to execute in any replica, but provides additional
guarantees to the application as we explain next.

First, Antidote relies on CRDTs for guaranteeing that concurrent updates are
merged in a deterministic way. Antidote provides a library of CRDTs with different
concurrency semantics, including registers, counters, sets and maps. The applica-
tions programmer must select the most appropriate CRDT, considering its function-
ality and concurrency semantics (e.g., add-wins, remove-wins).

Second, Antidote enforces causal consistency, guaranteeing that whenever an
update # may depend on update v, if a client observes update u he also observes up-
date v. Applications can leverage this property to guarantee their correctness when
the correctness depends on the order of updates, e.g., an update executed after chang-
ing the access control policies should not be visible in a replica with the old access
control policies.

Third, Antidote provides a highly available form of transactions, where reads
observe a causally-consistent snapshot of the database and writes are made visible
atomically. Unlike standard transactions, write-write conflicts are solved by merging
the concurrent update. Applications can leverage these highly-available transactions
to guarantee that a set of updates is made visible atomically.

Fourth, Antidote provides support for efficiently enforcing numeric invariants,
such as guaranteeing that the value of a counter remains larger than 0. To this end, it
includes an implementation of a Bounded Counter CRDT [20], a shared integer that
must remain within some bounds. The implementation uses escrow techniques [21]
for allowing an operation to execute in a replica without coordination in most cases.

Finally, associated with Antidote, we have developed a set of tools to verify
whether an application can execute correctly under weak consistency, and when this
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Figure 1.1 The Legion architecture (adapted from [24])

is not the case, what coordination is necessary. These tools are backed by a principled
approach to reason about the consistency of distributed systems [22].

Antidote is designed to be deployed in a set of geo-distributed data centers.
Within each cluster, data is sharded among the servers. Data is geo-replicated across
data centers. The execution of transactions in Antidote, and the replication of up-
dates across data centers, is controlled by Cure [23], a highly scalable protocol that
enforces transactional causal+ consistency (combining CRDTs for eventual consis-
tency, causal consistency and highly available transactions).

Legion. Legion [24] is a new framework for developing collaborative web appli-
cations that transparently leverage on the principles of edge computing by enabling
direct browser-to-browser communication. Legion was implemented in javascript
and it uses the Web Real-Time Communications (https://webrtc.org) to establish di-
rect communication channels among web application users. At its core, Legion en-
ables applications to transparently replicate, in the form of CRDTs, relevant applica-
tion state in clients. Clients can then modify the application state locally, and through
the use of hybrid gossip mechanisms, synchronize directly among them, without the
need to go through the web application server. The server however is still used both
to ensure the durability of the application state, but also to assist in the operation
of Legion, namely to simplify the task of creating the initial webRTC connections
among clients when they enter the application.

A simplified architecture of Legion is illustrated in Figure 1.1. Legion can be
used by a web application simply by importing a javascript script. This script pro-
vides the application access to the Legion API. The API exposes to the application
the ability to manipulate data objects that can be used to model the application state.
These data objects include records, counters, lists, and maps. All of these objects
are internally represented by Legion through CRDTs which simplifies the the direct
synchronization among clients of shared application state. This is provided by an
extensible CRDT Library that is part of the Object Store component of Legion. The
synchronization of objects among clients (and that of a subset of clients with the
server to ensure durability) is transparently managed by the Object Store.
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Figure 1.2 Proposed architecture for edge applications using Lasp

To guide the synchronization process, Legion leverages on an unstructured over-
lay network, whose construction is guided by the principles of hybrid gossip, and
takes into consideration the relative distance of each client among them. This allows
clients to mostly interact and synchronize with clients that are in their vicinity. While
the typical use case in Legion is to have clients interacting through the manipulation
of shared data objects, web applications also have access to communication prim-
itives that enable them to disseminate messages among the currently active clients
of the application in a decentralized fashion. This is achieved by a gossip-based
broadcast protocol that operates on top of the legion overlay network.

Finally, Legion also takes into account security, by ensuring that before clients
can start to replicate and manipulate application data objects they authenticate on a
server. Moreover, Legion exposes an adapter API, that allows developers to integrate
their Legion-backed applications with existing backends. The framework provides
adapters to the Google Real Time API°. These adapters allow the developers to lever-
age this backed to do any combination of the following: authentication and access
control, data storage for durability, and support to the WebRTC signaling protocol
required to create webRTC connections among browsers. More details on the design
and operation of Legion can be found in [24]. Legion is open source and available,
along side some demo applications through https://legion.di.fct.unl.pt.

Lasp. The Lasp language and programming system [25] was designed for ap-
plication development on unreliable distributed systems, and in particular for edge
computing. Lasp allows developers to write applications by composing CRDTs, as
explained above [18]. In addition to composition, Lasp also provides a monotonic
conditional operation that allows executing application logic based on monotonic
conditions on CRDTs. The Lasp implementation combines a programming layer
based on synchronization-free computing with a communication layer based on hy-
brid gossip. This makes the implementation highly resilient and well-adapted to edge
networks.

Many of today’s edge applications use the cloud as a database to store data com-
ing from the edge. By using Lasp as their database, such applications can be trans-

®https://developers.google.com/google-apps/realtime/application
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Ads
To
Display

With
Contracts

Figure 1.3 A Lasp computation to derive the set of displayable advertisements in
the advertisement counter scenario. On the left, Ads and Contracts
give information for the advertisements, including how many times
they have been displayed, and their contracts, including the threshold
for each advertisement. On the right are the advertisements that can be
displayed. All data structures are sets, similar to database relations,
and the computation is similar to an incremental SQL query.

lated to fully run on the edge (see Figure 1.2). This cannot be done with traditional
cloud databases since they are not designed to run on unreliable edge networks. In
the proposed architecture, the edge network runs everything: the sensors and aggre-
gation software on individual edge nodes, and the database (Lasp) on all edge nodes.
Analytics computations can be run either as an internal Lasp computation or external
to Lasp on individual nodes, using Lasp just as a database.

Example Lasp program. A typical application for Lasp is the scenario of ad-
vertisements counter that counts the total number of times each advertisement is
displayed on all client mobile phones, up to a preset threshold for each. Figure 1.3
defines graphically part of the Lasp program for this application. The actual code is
a straightforward translation of this graph. The application has the following prop-
erties:

e Replicated data: Data is fully replicated to every client in the system. This
replicated data is under high contention by each client.

e High scalability: Clients are individual mobile phone instances of the applica-
tion, thus the application should scale to millions of clients.

e High availability: Clients need to continue operation when disconnected as mo-
bile phones frequently have periods of signal loss (offline operation).

This application can be implemented completely on the edge, as explained previ-
ously, or partly on the cloud. For this application we have demonstrated the scala-
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bility of the Lasp prototype implementation up to 1024 nodes by using the Amazon
cloud computing environment to simulate the edge network [26].

1.1.5 Future Directions

Building additional tools and support for a new generation of ultrascale edge ap-
plications is quite relevant and challenging. The varied nature of edge computing
environments, which can combine small private clouds and data centers, specialized
routing equipment and 5G towers, users desktops, laptops and even cellphones, to
small things sensors and actuators, makes it a daunting task to build a single runtime
support that can efficiently operate on all such devices and deal with their hetero-
geneity.

While we presented a set of tools and frameworks that can ease the develop-
ment of ultrascale edge computing applications and services, these do not cover all
possible execution scenarios. That path to build such support requires not only the
development of specialized runtimes for different edge settings, but also devising
standard protocols and data representation models that allow the natural integration
of different runtimes in a cohesive and effective edge architecture.

Current solutions for data replication and management are also unsuitable for
the ultrascale that one is expected to find in emerging edge computing applications.
The use of CRDTs to address the requirements of data management in this setting
presents a viable approach. However, further efforts have to be dedicated in design-
ing new and efficient synchronization mechanisms that can naturally adapt to the
heterogeneity of the execution environment.
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