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1 Executive summary
Main progress The main progress of the first year is given by the following items:

• Basic programming model. Successful design of a single programming model for
edge computing, implemented in the LightKone Reference Architecture (LiRA)
which is defined in Deliverable D3.1. The programming model is defined by a for-
mal semantics that subsumes Lasp and Antidote, which are the two starting points
for LightKone that each represent an extreme case for edge computing, namely
light edge and heavy edge (as defined in the grant agreement). Both Antidote and
Lasp are based on CRDTs (Conflict-Free Replicated Data Types), which are repli-
cated distributed data structures that provide consistency in highly efficient manner
due to their mathematical structure (no consensus needed between replicas). Other
than both using CRDTs, Antidote and Lasp have little in common a priori, so the
development of the unified semantics was an important step for LiRA.

• Just-right consistency (JRC). Elaboration of a programming methodology for build-
ing highly available distributed applications that maintain consistency despite fre-
quent concurrent operations and network partitions. This methodology is consid-
ered essential for the development of heavy edge applications.

• Legion progress. Legion is a new LiRA component that provides data sharing and
communication among Web clients, such as mobile applications. Legion covers an
important part of the edge computing application space.

• Antidote progress. Antidote is a LiRA component that supports heavy edge ap-
plications. Continued development of the Antidote database system, including
both implementation and semantics. In particular, Antidote implements the JRC
methodology and we have implemented an SQL layer for Antidote, called AQL
(Antidote Query Layer).

• Lasp progress. Lasp is a LiRA component that supports light edge applications.
We have successfully scaled up Lasp to run on networks of 1024 nodes, which
required significant engineering effort and the design of a new workflow CRDT,

Lasp, Antidote, and Legion are released as software components to third parties.

Main innovations with respect to state of the art We compare LiRA’s programming
model progress with four major existing architectures for edge computing, namely the
OpenFog Reference Architecture, Microsoft Azure IoT, Amazon IoT Greengrass, and
ECC Edge Computing. With respect to the programming models of these architectures,
the main innovation of LiRA is the convergent data store, which provides a single API
that combines four abilities, namely resilient data storage, resilient communication, dis-
tributed consistency, and dynamic network support (node turnover). In the state of the art,
the burden of combining these four properties is put on the shoulders of the developer,
who must orchestrate interactions between storage, communication, and computation
services, in order to satisfy distributed consistency. In LiRA, this burden is handled by
the architecture. This innovation is highly relevant because networks on the edge have
unreliable nodes and unreliable communication, and are dynamic.
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Exploratory work In addition to LiRA innovation, we have also done significant ex-
ploratory work in the area of programming models. This exploratory work is an essential
part of a European-funded RIA because it provides early investigation of ideas for fu-
ture advances in the state of the art. Regarding LiRA, we have explored several possible
future directions for its evolution:

• Available file system. We investigate extensions to the standard Posix file system
semantics targeted toward distributed file systems running on unreliable networks,
e.g., subject to network partitioning.

• Quality-aware reactive programming. We investigate how quality-aware informa-
tion can propagate in the execution of a program, so that the program can react
quickly to changes in system reliability (unreliable nodes and communication).
This is relevant for maintaining acceptable performance on light edge despite in-
frastructure unreliability.

• Rethinking distributed programming. The main LightKone innovation, as pre-
sented above, is a step in the direction of abstracting away the inessential diffi-
culties of building distributed applications, leaving only the essential difficulties to
be managed by the developer. We have investigated further steps in this direction.
For example, instead of treating database contents as truth, an edge computing sys-
tem could invert its structure and treat the edge data (e.g., sensor data) as truth
and database contents as an approximation that converges toward the truth. Be-
cause convergence can be made automatic, this has the potential to simplify the
developer’s task.
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2 Introduction

The present deliverable documents the progress made on programming models in LightKone
during the first period (Month 1 - Month 12). Sufficient information is given in the main
body of this document (i.e., without the appendices or scientific papers) to evaluate this
progress. The document is structured as follows:

• Progress and plan (Section 3). This section summarizes the project plan regarding
programming models, and gives the Month 12 snapshot of the progress with respect
to this plan. Progress made with respect to the project milestones is presented.
Summaries are given of the major items of progress in programming models.

• Software (Section 4). This section gives the links how to access the software de-
liverables and their documentation.

• State of the art (Section 5). This section summarizes the state of the art in program-
ming models for edge computing, and gives the innovation provided by LightKone
with respect to this state of the art.

• Exploratory work (Section 6). This section gives the exploratory work performed,
i.e., the research-oriented work on programming models that is important for the
future evolution of LiRA.

• Published papers (Section 7). This section lists papers published by LightKone that
support this deliverable. The content of the papers is available on the LightKone
web site.

• Other dissemination (Section 8). This section lists other dissemination activities
related to this work package, in particular invited talks and submitted papers by
LightKone that support this deliverable.

• Unified semantics for LiRA (Antidote and Lasp) (Appendix A). This appendix
complements the programming model progress summary of Section 3. It is in-
cluded as reference because it has not been published elsewhere.

• Operational semantics for Antidote (Appendix B). This appendix complements the
programming model progress summary of Section 3. It is included as reference
because it has not been published elsewhere.

• References (Appendix C). This section gives bibliographic references to published
articles outside of the project (either by partners before the project, or by third
parties) that support this deliverable’s work.

All the work explained in this deliverable is supported by released and documented soft-
ware and by other documents including published scientific papers. We recall that it is
not necessary to read the scientific papers nor the appendices to evaluate the progress
of the programming model work; all necessary information is given in the main text of
this deliverable. They can be used as references, to clarify any point or to give extra
information where necessary.
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2.1 Summary of deliverable revision
This deliverable has been revised since its original submission to incorporate comments
and modifications requested by the European Commission Reviewers. The main changes
made to the deliverable are as follows:

• The LightKone Reference Architecture (LiRA) is defined in Deliverable D3.1, as
requested by the Reviewers, and the programming model related part of LiRA is
explained in the present document.

• Explanation of the need to define a new semantics is given in Section 3.3 and Sec-
tion 5. As explained in these sections, the LiRA programming model itself is an
innovation that does not exist in any of the major edge computing architectures.
In brief, the new semantics exists to ensure that developers using LiRA see no un-
pleasant surprises and to pave the way for coherent future enhancements of LiRA.
The new semantics allows us to reduce risks when evolving LiRA.

• The achieved results of work packate 4 during the first period are fully described
in the present document and not redirected to scientific papers. Note that this was
already the case in the original submission of Deliverable D4.1, where the scientific
papers were included only as reference but not needed for evaluation. The present
document does not include the scientific papers; they are all available on the project
web site.

3 Progress and plan
We present the progress made on the programming model for the LightKone reference
architecture during the first 12 months. Comparison with state of the art and explanation
of innovation is done in Section 5.

3.1 Plan
We present the plan for programming models for edge computing, year by year. Note
that for convenience this plan is divided into three phases, one per year, but the actual
work of the phases will of course overlap as needed.

• Year 1. The first year of the project defined a basic programming model for edge
computing, which is supported by a set of components in the reference architec-
ture. The purposes of this first model is to show feasibility of general-purpose edge
computing with respect to the basic functionality that we estimated will be needed
by the use cases. This programming model is supported by three components in the
reference architecture, namely Antidote, Legion, and Lasp. Antidote was originally
designed for cloud environments, and it is being extended for the edge. Legion is
designed for mobile applications, and runs directly on client nodes (e.g., mobile
phones). Lasp was designed for running on dynamic networks, such as edge net-
works, and will be ported on edge networks in the second year of the project. Lasp
uses a fourth component, Partisan, which provides for resilient communication on
dynamic edge networks.
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• Year 2. During the second year of the project, the programming model will be
extended as needed for relevant scenarios from the use case scenarios in WP 2.
The second model will extend the first model with relevant functional and non-
functional properties. Specifically, Lasp will be ported on the GRiSP embedded
systems board and extended to allow it to perform computations directly at the
edge by adding a task model. This will allow applications to run completely on the
GRiSP board, completely at the edge without necessarily requiring connections to
a gateway or to cloud for normal functioning. Basically, these connections will
be used to manage the application, but not for moment-by-moment running of the
application. Furthermore, Antidote will be extended with an edge client, called
EdgeAnt, that allows it to support heavy edge applications.

• Year 3. In the third and final part of the project, we will focus on the imple-
mentation and evaluation of use case scenarios chosen from the WP 2 industrial
partner use cases. The programming model will then be targeted toward these use
cases and will be improved for scalability and robustness through feedback from
the evaluations of WP 7.

3.2 Progress

In this subsection we summarize the progress in programming models during the first
year of the project. These programming models are supported by LiRA, as presented in
Deliverable D3.1. Section 5 compares this work with the state of the art and gives the
innovations that it represents.

Regarding project milestones during the first period, work package 4 delivered MS2.
This milestone marks that the generic edge model is ready for application development.
With respect to the programming model, this milestone has been achieved through the
design of the unified semantics. With respect to the implementation, the progress is
explained in Deliverable D3.1.

(a) Basic programming model

The main result of the first year, in terms of programming models, is the successful de-
sign of a unified programming model for edge computing. This programming model
underlies LiRA and is supported by the main components in LiRA, as they are presented
in Deliverable D3.1. Because of this programming model, LiRA is more than just a col-
lection of components; rather, the components work together to provide a simple model
for application developers. The programming model provides a single API that is pro-
vided in three variants (Antidote, Lasp, and Legion), targeted toward three different edge
scenarios. Section 3.3 gives more information on this contribution.

(b) Just-right consistency (JRC)

Just-right consistency is a programming methodology for building highly-available dis-
tributed applications that maintain consistency despite concurrent operations and network
partitions. JRC is being realized for the Antidote platform, with new tools, tutorials, and
techniques to facilitate its use by developers. We consider that JRC is important for edge
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computing because of the dynamicity and unreliability of edge networks. The effective-
ness of JRC will be evaluated during the last year of the project. Section 3.4 gives more
information on this contribution.

(c) Legion progress

Legion is a LiRA component that provides data sharing and communication among Web
clients, such as mobile applications. Legion uses CRDT data structures and peer-to-
peer communication between devices. Because of CRDT semantics, Legion provides
data consistency requiring only eventual peer-to-peer communication between devices.
Legion is able to use centralized services if necessary for data durability. Legion provides
a library of useful CRDT data types for the application developer. Work is being done
on improving scalability of Legion applications, to allow hundreds or more of clients.
Section 3.5 gives more information on this contribution.

(d) Antidote progress

Antidote is a LiRA component that provides transactional database abilities with causal
consistency and support for heavy edge applications (a.k.a. fog computing). These abil-
ities go significantly beyond the state of the art: in particular since Antidote uses CRDT
data types, it is able to commit transactions even if there are network partitions, without
sacrificing consistency (see Section 5 for more explanation). The Antidote software sys-
tem is in continuous development toward making it ready for building real applications;
the progress in this area is presented in Deliverable D6.1. In the present deliverable, we
focus on the programming model aspect of Antidote. In this area, progress was made in
two areas. First, the definition of an operational semantics for Antidote that ensures that
the API provides a solid behavior with no unpleasant surprises. Second, the addition of
an SQL layer for Antidote, called AQL (Antidote Query Layer).

(e) Lasp progress

Lasp is a LiRA component that provides the ability to do reliable computation directly
on edge devices, given a limited amount of computing power and communication abil-
ity. Lasp uses CRDT data structures and the Partisan library for reliable communication.
Lasp goes significantly beyond the state of the art in providing reliable computation di-
rectly on edge devices. No gateway or Internet connection is necessary for Lasp operation
(although of course they can be used, e.g., for periodic system management), which we
call light edge applications. Progress on Lasp implementation is presented in Deliverable
D5.1. In the present deliverable, we focus on the programming model aspect of Lasp.
In this area, we have successfully scaled up Lasp to 1024 nodes (as presented in PPDP
2017, see Section 7.1). Significant engineering effort is required to successfully build and
measure successfully measure systems at this scale. In our case, this required adding new
programming abilities for deployment and orchestration, as encapsulated in the workflow
CRDT.
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3.3 Basic programming model

A programming model is exposed to a developer as an API, and provides to the developer
a set of operations that satisfy a particular semantics. The APIs of the relevant LiRA
components are presented in the software deliverables (see Section 4). In this section
we explain the semantics underlying these APIs and how this is applied to Lasp and
Antidote. The integration of Legion into the semantics is the subject of future work.

The full semantics of the programming model is presented in Appendix A, followed
by the specific semantics of Antidote operations in B. Neither of these documents have
yet been published in a scientific paper, and for this reason and because of their brevity,
we include them in this deliverable. However, we emphasize that it is not necessary to
read them in detail; they are provided only as a reference. All relevant information for
evaluating the project is provided in the main body of the deliverable.

LiRA, the LightKone Reference Architecture defined in Deliverable D3.1, supports
the semantics defined in the present deliverable (and its further development in the project).
The semantics is exposed to programmers through the relevant LiRA components. In this
way, both Antidote and Lasp are a coherent part of LiRA. In the future, extensions of
LiRa components will be done as required by the implementation and evaluation of the
use case scenarios, but always in accord with the unified semantics. The existence of this
semantics is very important, even if developers never see it directly (they only interact
with APIs): the existence of the semantics guarantees that LiRA components will behave
well with no unpleasant surprises.

(a) Motivation and approach

The LightKone project started with two independent platforms for synchronization-free
programming, namely Lasp and Antidote, which were both developed in the previous
project SyncFree. Both platforms are based on CRDTs, but they developed in oppo-
site directions: Lasp provides dataflow computation at the edge and Antidote provides a
transactional database in data centers. They explored complementary directions of how
to use CRDTs, which are distributed data structures that provide consistency even with
very weak synchronization.

Lasp and Antidote are two separate implementations with significant development
effort put into each. It was clear from the beginning that we needed to merge these
implementations into a single reference architecture:

• All applications would be able to take advantage of the functionality of both plat-
forms.

• Applications could be distributed both on the edge and in data centers.

• New functionalities that take advantage of both platforms could be introduced, such
as edge transactions and data center dataflow.

• Project resources would be better used, since there would be no duplicate imple-
mentation efforts.

However, there were two obstacles to overcome:
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• Since each of the two platforms already has significant invested resources, making
a single reference architecture would seemingly require a huge reimplementation
effort.

• For the reference architecture to be useful, we would have to answer the conceptual
question of how the Lasp and Antidote functionalities can be combined.

At the LightKone Kickoff meeting in January 2017, the work on the reference architec-
ture started. The first step was to understand conceptually what it means to merge the
Lasp and Antidote approaches. We started by defining an operational semantics for Lasp
and for Antidote. The Lasp operational semantics is defined in [5]; the Antidote opera-
tional semantics is defined in Appendix B. We merged these separate lines of work using
event visibility semantics, as defined by Sebastien Burckhardt in his book on eventual
consistency [4]. Once this approach was decided on, progress was rapid and led to the
semantics defined in the present report. The visible result of this work is the coherence
of the LiRA architecture: the components work together and the API variants (targeted
toward different edge scenarios) are doing the same data structure operations.

(b) Programming model semantics

This section gives a summary of the programming model semantics. The full semantics is
given in Appendix A, which is provided as a reference in this deliverable since it has not
been published yet. The semantics defines systems in terms of their abstract executions,
where an abstract execution is a set of events connected by their visibility. An event is an
interaction between a client and the system. Each event can see some past events, which
is defined by the visibility relation. Formally, an abstract execution is a directed graph
where the nodes are the events and the edges are the visibility relation between events.
We explain the intuition of these ideas below. Further development of LiRA commits
to respect this semantics. Exploration of new areas of edge computing will result in
extensions of the semantics.

Events and visibility The two basic parts of an abstract execution are events and their
visibility.

• An event e defines an operation on an object. Events contain several pieces of
information: a key, an operation, and a result value. The set E denotes the set of
all possible events, so that e ∈ E. Each event has a key k, where k = key(e) ∈ Keys,
where k uniquely identifies the object. The operation op(e)∈Ops performed on the
object. The result value of the operation res(e) ∈ V where V is the set of possible
result values.

• The visibility relation vis⊂ E×E that defines for each event what other events are
visible to it.

Correctness An abstract execution is correct if it satisfies the following conditions:

• Acyclic visibility: there are no cycles in the vis relation.

LightKone Deliverable D4.1, January 15, 2019



• Total arbitration: it is possible to order all events. This is important to avoid nonde-
terminism in the semantics. An arbitration relation ar is added so that concurrent
events can be ordered.

• Per-object eventual consistency: all of an object’s events are seen by all but a finite
number of the object’s other events.

• Correct data types: The res(e) function gives the same result as FT (c) where c is
the context of event e.

• Causality: the vis relation is transitive.

Data types Each object in an abstract execution has a type T . The value of an object
is defined at each event e. The value does not depend on e by itself, but on all the events
that are visible to e, which is known as e’s context. The data type is defined by a function
FT that takes a context and returns the value. Both Antidote and Lasp support a number
of data types, each with their particular function FT .

Lasp semantics Lasp semantics are defined by adding two concepts to the basic ab-
stract executions, namely Lasp objects and links. First we partition the key space Keys
into base objects and Lasp objects. Then we link each Lasp object to n other objects
(either Lasp objects or base objects). The link is defined by a list of object keys and a
function: ([k1, ...,kn], f ). The function defines how the value of the Lasp object depends
on the n objects it depends on. Following the semantics of [5], the Lasp implementation
supports a number of link operations, namely map, product, intersection, filter, and fold.

Lasp allows linking data items by operations, so that if the input is updated, the
output is computed automatically. This follows the convergence of CRDTs: both input
and output will converge. We define the convergence between linked objects as follows.
If a Lasp object ka depends on an object kb, then there is eventual consistency between
the two objects: all events of kb are seen by all but a finite number of ka’s events. This
assumes there are an infinite number of events for kb; if this is not true (since Lasp objects
are not necessarily read infinitely often), then a slightly different definition is needed (as
explained in Appendix A).

Antidote semantics Antidote semantics are defined by adding two concepts to abstract
executions, namely transactions and versioning:

• Each event is associated with a transaction identifier t. We define atomic visibility
between two transactions t1 and t2 so that all the events of t1 and all events of t2 are
either mutually visible in the same order, or mutually invisible.

• Each event is also associated with a version, which is a set of events. We can define
snapshots according to how versions affect visibility. Min snapshot is defined so
that if an event is in another event’s version, then the event is also visible to that
event.

Antidote provides both atomic visibility and min snapshots. Since the abstract execution
does not model time, we assume that all transactions are committed. We also do not
currently define isolation levels. Both extensions are the subject of future work.
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Correctness of the implementation The semantics can be used to prove correctness
of the implementation. The basic abstract execution, as introduced above, models the
relevant events of an execution without defining their distributed behavior (i.e., on which
nodes they execute). The execution is called abstract because it does not show on which
nodes the events are executed; a concrete execution does show the node of each event.
We extend the abstract semantics by adding the distributed behavior, namely nodes, node
states, and messages between nodes. This gives the concrete semantics, which directly
corresponds to the execution of the distributed algorithms in the implementation. Given a
concrete execution, we consider the interaction between clients and the system, which is
called an observable history. If an observable history can be extended to a valid abstract
execution, then the concrete execution is correct. With this approach, we can prove that
the Lasp and Antidote protocols satisfy the unified semantics.

3.4 Just-right consistency (JRC)
Just-Right Consistency is a programming methodology to write highly-available, CRDT-
based applications that maintain their invariants despite concurrency and occasional net-
work partitioning [6]. Future work will explore how to push just-right consistency toward
the edge. This gives a methodology that is closely related to the vision of decentralized
truth presented in Section (b).

(a) JRC in a nutshell

When designing a distributed application, the choice of consistency model directly im-
pacts safety and performance. No single model is universally best: synchronous models
are safest, but asynchronous ones are fast and tolerate partition. Our Just-Right Consis-
tency (JRC) approach aims to minimise the amount of synchronisation, while ensuring
that the application’s invariants are safe. It is a provably correct way of tailoring consis-
tency to specific application requirements.

JRC builds upon common invariant-preserving programming patterns. Two patterns
(ordered updates and atomic grouping) are compatible with concurrent and asynchronous
updates. Another (precondition check) is sensitive to the CAP impossibility [7], but
requires synchronisation only in certain cases (unstable precondition).

JRC is practical. Concurrent updates are supported by the CRDT data model. The
Transactional Causal Consistency model supports the first two patterns. Encapsulated
data types, such as the Bounded Counter, support common cases of CAP-sensitive pat-
terns efficiently. Our CISE and Repliss static analysis tools (both presented in Deliverable
D6.1) proves when preconditions are stable and CAP-sensitive updates can safely execute
concurrently.

(b) Starting point: a safe sequential application

To be concrete, consider the FMKe application, described in Deliverable D8.2. FMKe
simulates a healthcare network and manages the data and events relating patients, doc-
tors, hospitals and pharmacies. It must maintain invariants, for instance that a doctor
signs the prescription before the pharmacy will process it, and the pharmacy does not
deliver more medication than prescribed. To maintain these invariants, a sequential ver-
sion of FMKe will follow some typical patterns. The first is to perform operations in a
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certain order, which is significant. The second is to make several database accesses in
a same operation. Finally, preconditions: e.g., the pharmacy checks that a medication
has not already been delivered. These three patterns —mutual ordering, joint access, and
precondition-update— are critical to safety. We do not ask the developer to make her in-
variants explicit, but we assume that operations are correct, i.e., when the database starts
in a safe state, any application-level operation run in isolation leaves the database in a
safe state. This is the Correct-Individually property, the C of ACID.

JRC is a methodology for moving such a sequential operation to a geo-distributed,
highly available environment. We assume that the application represents its data as
CRDTs in order to allow concurrent updates. However, a major challeng remains: to
ensure that invariants remain satisfied. We discuss our approach in the next few sections.

(c) Leveraging the order of operations is AP-compatible

The first pattern is ordering updates. For instance, the doctor signs a prescription before
sending it to the pharmacy. If events are delivered in the wrong order, an incorrect state
can be observed, e.g., the pharmacy sees an unsigned prescription. Therefore, Just-Right
Consistency requires to respect the mutual ordering of events.

This is achieved by a data store that guarantees Causal Consistency (CC). Under CC,
if update v depends on operation u, then every observer sees u before v. CC transparently
maintains the correct order from the sequential application, without any effort from the
developer. Unrelated (concurrent) updates can become visible in any order.

CC is compatible with AP [2], because the store only might have to buffer v until
u has been delivered. The Antidote store developed in LightKone is an AP store that
guarantees CC.

(d) Grouping is AP-compatible

Our second pattern concerns a group of database accesses happening jointly. Just-Right
Consistency requires to respect this grouping.

FMKe offers several examples. For instance, signRx reads the patient and doctor
IDs from a prescription, and updates the corresponding patient, doctor and prescription
objects. Intuitively, all the reads of a group should come from a same snapshot, and its
writes be visible in the store at once, in an all-or-nothing manner. Otherwise, for instance,
there could be a state where a prescription is referenced by the patient object, but not by
the pharmacy object, or vice-versa.

Such atomic grouping can be implemented in an asynchronous manner, since taking
a snapshot of the database state does not require any synchronisation between remote
replicas, nor does applying several updates at once. Our Antidote data store supports
all-or-nothing grouping, in addition to causality; we call this model Transactional Causal
Consistency (TCC).

(e) CAP-sensitive safety pattern: precondition-update

Our final precondition-update is the case where an operation checks a precondition before
doing some update, to ensure that the final state will be safe (assuming the initial state
was safe). If every operation does this, this is the C property of ACID. For instance,
processRx checks that a medication’s count is greater than the quantity to be delivered;
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if so, the count decreases by that quantity. Implicitly, the code is maintaining the invariant
count≥ 0.

This is where CAP comes in: under partition, the state might change at a remote
replica, falsifying the local precondition check. Although the operation is safe in isola-
tion, asynchronous concurrent updates can break it.

Even for a CAP-sensitive pattern, not all executions need to be synchronised, because
not all preconditions are unsafely affected by concurrency. Consider a database state
where the precondition of some operation u is satisfied. If, in this state, executing update
v will never make the precondition of u false (we say the precondition of u is stable under
v), and vice-versa, then u concurrent with v is OK. We synchronise only when strictly
necessary because of non-stability. Analysing precondition stability is tractable, because
you only need to compare operation to operation pairwise (no need to look at all possible
combinations) [8].

(f) Helping the developer to apply Just-Right Consistency

To maintain sequential safety in a concurrent setting while maximising availability re-
quires the following: (i) Each operation is safe individually; (ii) concurrent updates merge
and converge; (iii) the system obeys the relative order of non-concurrent updates; (iv) it
enforces groupings; (v) when the precondition of some operation u is unstable under
operation v, the two operations do not run concurrently.

To help the developer, LightKone is developing supporting tools, briefly listed next.
The Antidote data store described in Deliverable D6.1 is an essential building block

for JRC. Indeed, Antidote supports CRDTs efficiently ((ii)). It also guarantees Transac-
tional Causal Consistency ((iii) and (iv)), thus enforcing the two AP-compatible invariant
patterns.

Antidote supports concurrency control, required for point (v), through a specific but
very common case: the Bounded Counter (BC) replicated data type [3].

The static analysis tools CISE and Repliss serve to prove that operations are safe in
isolation (i), that concurrent execution converges (ii), and that concurrent updates are
mutually stable (v).

For instance, CISE takes as input a first-order-logic specification of the operations
and invariants. It comprises three main analyses. Analysis 1 verifies that each operation
is individually safe (item (i)). For any safe combination of starting state and arguments
(i.e., the state satisfies the invariant, and the operation’s precondition is true in this state
with the given arguments), it verifies that the final state is safe. If this verification fails, it
means that the operation’s precondition was too weak; the tool returns a counterexample
that allows the developer to diagnose the issue. Thus, the tool can also be used as a design
assistant.

The next two analyses verify pairs of possibly-concurrent operations; operations that
are never concurrent can skip them. For any safe state/argument combination, Analysis 2
verifies that running the pair in either order yields the same safe final state (convergence,
item (ii)). Analysis 3 verifies that the precondition of one operation is stable under the
side-effects of the other (stability, item (v)). If either verification fails, the developer
needs either to put in some concurrency control, or to weaken the invariant, as discussed
earlier.
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If all three pass, this constitutes formal proof that the application invariant remains
true at all times [8]. For instance, we proved the safety of FMKe.

(g) AntidoteFS

As a case study of this approach, we are developing AntidoteFS,1 a distributed file system
built on Antidote. The main design goal of AntidoteFS is respecting a near-POSIX se-
mantics while still maintaining high availability in the face of network partitions. There-
fore, in this case, the application-level invariants are those defined in the POSIX file
system specification. We used the CISE verification tool to identify the CAP-sensitive
file system operations, i.e. the operations that require coordination in order to maintain
the POSIX invariants. The main output of this analysis has been that operations that move
folders have to be synchronized in order to preserve the invariants of the tree-like struc-
ture of the file system. Therefore, as next step, we intend to judiciously blend different
coordination protocols to implement a consistency model that just matches the seman-
tics of the individual file system operations. This is in stark contrast with state-of-the-art
file systems, which either give up POSIX semantics tout court in favor of availability, or
adopt coordination protocols which penalize performance and scalability. Further details
on AntidoteFS are reported in D6.1.

3.5 Legion progress

Legion is a set of LiRA components for data sharing and communication among Web
clients. It allows programmers to design web applications where clients access a set
of shared objects replicated directly at the client machines. The current Legion system
assumes that applications have tens to a few hundred of users sharing the same state (i.e.,
the same data bucket).

The design and implementation of Legion is presented in Deliverable D5.1. The main
contribution of Legion lies in its architecture and the combination of the multiple proto-
cols that were used to achieve its design. The interested reader is therefore redirected to
that document or to the original paper where this work was presented [9].

Shared objects are implemented as CRDTs, which guarantees consistency between
clients. Clients can synchronize local replicas directly with each other, by leveraging on
recent advances in browser technology, namely on Web Real Time Communication (We-
bRTC) connections. For ensuring durability of the application state, as well as to assist
in other relevant aspects of the systems operation, Legion resorts to a set of centralized
services. We designed Legion so that different Internet services (or a combination of
Internet services and Legion’s own support servers) can be employed. These services are
accessed uniformly by Legion through a set of adapters with well defined interfaces.

We assume that the application state is organized in containers, that aggregate multi-
ple data objects. Containers are replicated by clients completely. While Legion provides
causal consistency guarantees over the state observed by clients over their local replicas,
this is only provided for each container (i.e, causality is not enforced among different
containers).

1https://github.com/SyncFree/antidote-fs
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(a) Legion data types

Data objects in Legion are exposed to application programmers as CRDTs. The Legion
runtime is responsible for managing the replication of these CRDTs among the clients
(and the centralized infrastructure for a few clients as to ensure durability).

To support this programming model Legion provides an extensible library of data
types. Objects are exposed to the application through (transparent) object handlers that
hide the internal CRDT representation.

The CRDT library supports the following data types: Counters, Strings, Lists, Sets,
and Maps. Our library uses ∆-based CRDTs [10], which are very flexible, allowing repli-
cas to synchronize by using deltas with the effects of one or more operations, or the
full state. This new type of delta-based CRDTs [1] is specially designed to allow effi-
cient synchronization in epidemic settings, by avoiding, most of the times, a full state
synchronization when two replicas connect for the first time. Each data type includes
type-specific methods for querying and modifying its internal state, and generic methods
to compute and integrate deltas (i.e., differences among pairs of replicas).

In order to synchronize different replicas of an object, Legion relies on an application
level multicast primitive that operates on top of the unstructured overlay that supports the
replication of the corresponding data container.

The multicast primitive is used to propagate and receive deltas that encode modifi-
cations to the state of local replicas in a way that respects causal order (of operations
encoded in these deltas). To achieve this, we use the following approach.

For each container, each client maintains a list of received deltas. The order of deltas
in this list respects causal order. A client propagates, to every client it connects to, the
deltas in this list respecting their order. The channels established between two clients are
FIFO, i.e., deltas are received in the same order they have been sent.

When a client receives a delta from some other client, two cases can occur. First,
the delta has been previously received, which can be detected by the fact that the delta
timestamp is already reflected in the version vector of the container. In this case, the
delta is discarded. Second, the delta is received for the first time. In this case, besides
integrating the delta, the delta is added to the end of the lists of deltas to be propagated
to other peers.

The actual implementation of Legion only keeps a suffix of the list of deltas received.
Note that, at the start of every synchronization step, clients exchange their current vector
clocks, which allow them, in the general case where their suffix list of deltas is large
enough to include the logical time of their peer replicas, to generate deltas for propagation
that contain only operations that are not yet reflected in that peer’s state.

However, when two clients connect for the first time (or re-connect after a long period
of disconnection), it might be impossible (or, at least, inefficient) to compute the adequate
delta to send to its peer. In this case the two clients will synchronize their replicas by
using the efficient initial synchronization mechanism supported by ∆-based CRDTs. In
this case, if only a delta has been received, it is added to the list of deltas for propagation
to other nodes. If it was necessary to synchronize using the full state, then the client
needs to execute the same process to synchronize with other clients it is connected to.
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4 Software
The basic programming model is released as three software artefacts, namely Lasp, An-
tidoteDB, and Legion.

4.1 Lasp system
Documentation https://lasp-lang.org

Code repository https://github.com/lasp-lang

4.2 AntidoteDB system
Documentation http://antidotedb.org

Code repository https://github.com/SyncFree/antidote

4.3 Legion system
Documentation https://legion.di.fct.unl.pt/

Code repository https://github.com/albertlinde/Legion
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5 State of the art
We compare the LightKone work in programming models for edge computing to the state
of the art, and we explain the innovations. For state of the art comparisons regarding
algorithmic support we refer to the deliverables D3.1, D5.1, and D6.1.

5.1 Summary of SOTA
We split the SOTA discussion into two parts: technical SOTA and architecture SOTA. The
most important SOTA comparison is with respect to edge architectures, in the architecture
SOTA, but it is useful also to provide a brief technical SOTA, that is independent of edge
architectures. In the technical SOTA, which is explained in Section (a), we explain the
technical innovations of LiRA in the area of programming models. In the architecture
SOTA, which is explained in the rest of Section 5, we present the major edge architectures
that exist currently and we explain the programming model innovations of LiRA with
respect to these architectures.

(a) Technical SOTA

Before presenting the edge architectures, we briefly summarize the technical innovations
of LightKone. In this area, the state of the art consists of the following:

• Eventual consistent key/value stores, of which a representative system is Cassan-
dra.

• Key/value stores with support for CRDTs, of which a representative system is Riak.

• Communication software providing reliable broadcast ability on dynamic networks,
of which representative systems are existing publish/subscribe systems.

The key/value stores mentioned above execute in cloud environments or environments
close to cloud (high-performance nodes). There exist edge extensions to these environ-
ments, but they are purely interfaces: the reliability and computation is provided by the
key/value stores and not in the edge extensions.

The convergent data store provided by LiRA extends eventually consistent stores with
a convergence property, which is explained in Appendix A. Convergence is an innovation
with respect to eventually consistent data stores. The convergent data store provided
by LiRA, in the Lasp component, uses a highly resilient communication component,
Partisan, that is able to provide connectivity and broadcast even with extremely high node
turnover, because it is based on hybrid gossip. The ability to provide these abilities is an
innovation with respect to existing communication software, none of which is currently
based on hybrid gossip.

(b) Architecture SOTA

At the present time there exist several large consortia that have defined edge architectures
and that provide platforms to realize part of these architectures. We present four edge ar-
chitectures, namely OpenFog RA, Microsoft Azure IoT, Amazon IoT Greengrass, and
ECC Edge Computing. We summarizes the programming models of these architectures
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and give the LightKone programming model innovations with respect to these program-
ming models. For more detailed explanations of these architectures and their relationship
to LiRA, we refer to Deliverable D3.1.

In all the edge architectures presented here, the system consists of a basic founda-
tional layer (typically providing network interface, virtualization, basic storage primi-
tives, basic security primitives), with a service layer on top. The applications live on top
of the service layer and interface with the services that they need. For nontrivial applica-
tions, this puts the burden of service coordination on the developer, who must coordinate
all used services and their APIs. LightKone provides several innovations compared to
these architectures, which significantly increase functionality for edge applications while
at the same time lightening the developer’s burden.

OpenFog Reference Architecture The OpenFog RA is based on a layered structure
with Node-level services on the bottom (network, compute, storage, etc.), and application
support services on top. OpenFog advocates two distributed computing patterns, namely
client-server computing with transactional databases and publish/subscribe messaging.
No resilience or consistency management is part of the reference architecture; it must be
provided by services.

Microsoft Azure IoT Microsoft Azure IoT is based on a data streaming model, with
bidirectional data streams from IoT devices to cloud services, using intermediate gate-
ways. Computation at the edge is limited to aggregation and compression; decision mak-
ing is done in the cloud. As programming model, Azure IoT recommends using actor
frameworks, which consist of a large number of independent concurrent actors collabo-
rating with each other. The actor model is very similar to Erlang’s process model, and is
implicitly supported by LightKone. No resilience or consistency management is part of
the reference architecture; it must be provided by services.

Amazon IoT Greengrass Amazon IoT Greengrass is based on containerized local ex-
ecution of AWS Lambda functions in a collection of local nodes together called a Green-
grass Core, providing local computation and storage ability that does not need Internet
connectivity. Communication between local Cores, other local services, and cloud ser-
vices, is done using publish/subscribe messaging. It is possible to synchronize a Core
with the cloud, but this is not required for Core operation. No other resilience or consis-
tency management is part of the reference architecture; it must be provided by services.

ECC Edge Computing ECC Edge Computing is a high-level model that is based on
using knowledge in specific application domains, called “model-driven” edge computing.
It is a layered structure where the central concept is the ECN (Edge Computing Node)
with its basic functionality, organized in a virtualization layer. Services run on top of this
layer. There is support for basic data consistency (mentioned in the document, but not
elaborated on) in the service layer. Causal relationships among edge data are mentioned
as important, but no architectural support is given for them. Other than these mentions
of consistency, there is no other resilience or consistency management in the reference
architecture.
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5.2 Innovation with respect to SOTA
We compare the programming model of LiRA (LightKone Reference Architecture, de-
fined in Deliverable D3.1), with the state of the art in edge architectures as summarized
in the previous section.

(a) Main innovation

Compared to the edge architectures, the core innovation of LightKone is a convergent
data store, which combines four abilities:

1. Resilient data storage (replicated key/value store, based on CRDTs).

2. Resilient communication (based on hybrid gossip).

3. Distributed consistency (based on convergent consistency of CRDTs, causal con-
sistency support, transaction support, and Just-Right consistency support).

4. Dynamic network support (high churn of nodes joining and leaving).

LightKone provides a single programming model that combines these four abilities. This
programming model is declined into three variant APIs, targeted toward three funda-
mentally different edge scenarios: one in heavy edge (a.k.a. fog computing)2, and two
in light edge (a.k.a. edge computing in the OpenFog RA document, as opposed to fog
computing). These three variants are the following:

• The Antidote system, targeted toward heavy edge scenarios.

• The Lasp system, targeted toward light edge scenarios for sensor networks.

• The Legion system, targeted toward light edge scenarios for mobile networks (net-
works of communicating smartphone clients).

In addition to this fourfold core innovation, LightKone provides additional innovations
that support this core for specific use cases. These additional innovations have little effect
on the programming model, so they are described in the other deliverables, namely D3.1,
D5.1, and D6.1.

(b) Elaboration of the innovations

In this section we give more information on the LightKone innovations. For full infor-
mation, please see the software deliverables and the published documentation (including
scientific papers).

• JRC methodology for heavy edge applications (see also Section 3.4). State of the
art systems for heavy edge are designed primarily to support strong consistency
(e.g., Spanner, and Cassandra in the appropriate configuration), and their support
for weaker consistency is added for performance and does not guarantee appli-
cation invariants. JRC innovates with respect to this by guaranteeing application
invariants also in the case of weak consistency.

2The difference in terminology between the LightKone Grant Agreement and the OpenFog RA occurs
because the OpenFog RA document was published after the start of LightKone.
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• Semantics for the reference architecture (see also Section 3.3 and Appendix A).
Three important components of LiRA, namely Antidote, Legion, and Lasp, are
based on extensions of the CRDT concept. The existence of a semantics for Anti-
dote and Lasp is an innovation with respect to state of the art. State of the art sys-
tems do not have a formal semantics. The semantics is important for us, however,
because it guarantees consistency for full programs and not just single CRDTs. In
particular, the semantics guarantees a smoother improvement path for LiRA and a
reduced likelihood for unpleasant surprises as new functionality is added. This is
important since we are breaking new ground; the semantics helps us reduce risks
when building innovative systems.

• Operational semantics for Antidote (see also Section (b) and Appendix B). No state
of the art database has a documented formal operational semantics; rather the se-
mantics is given informally in natural language. The existence of this semantics
is an innovation that is necessary to prepare future evolution of the Antidote com-
ponent in LiRA. The semantics is a necessary prerequisite for tool support and for
supporting powerful methodologies such as JRC.

• Materialized views for light edge applications (see Section (b)). The ability to
link CRDTs together in Lasp provides materialized views, which is an approach to
perform computation while guaranteeing consistency. Because of the semantics,
it guarantees convergence, reliability, and scalability for such computations, just
as for the CRDTs themselves. All existing CRDT-based databases in the state of
the art (of which the most visible example is Riak) are limited to CRDT-based
data storage without support for transactions or materialized views or causality.
LightKone innovates by adding these abilities to CRDT data storage.

• Peer-to-peer CRDTs for mobile applications. The use of CRDTs directly in mobile
clients is an innovation with respect to state of the art. No existing state of the art
system, to our knowledge, runs CRDTs directly on mobile devices. This innovation
guarantees data consistency for data stored in the mobile phone.

• Resilient communication for dynamic networks. The Partisan library provides a
reliable broadcast operation for highly dynamic networks, by using hybrid gossip
to reorganize the communication structure on the fly. The use of hybrid gossip on
edge networks is an innovation with respect to state of the art ad hoc networks, that
provides much increased resilience. Partisan’s internal hybrid gossip algorithms,
namely Plumtree and HyParView, main connectivity with high probability despite
losing 90% of nodes.

6 Exploratory work
Exploratory work is an important part of a European-funded RIA because it investigates
and develops ideas that advance the state of the art both in research and industry. This
section explains the exploratory work in the area of programming models that has been
done during the first year and gives indications how to decide whether the work will
make it into a future version of LiRA. It is clear that LiRA will always be evolving, since
edge computing is an evolving field. The exploratory work prepares for LiRA’s future
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development. This work is risky in the sense that not all of it will become part of the
reference architecture. Such risk-taking is a necessary part of all successful research.
Success of this work is to be measured not on how much of the work becomes part of the
reference architecture, but on whether sufficiently innovative exploration is done and on
whether the reference architecture itself is sufficiently innovative.

Since LightKone is an RIA with both a research and an innovation part, the research
part must be active to explore new ideas that can migrate into the innovation part. A
second reason for the exploratory work is as preparation for continued research after the
LightKone project ends. Research is a continuous activity that should not be interrupted
by project boundaries, if we want to maximize its productivity. Future innovation done
by the partners, possibly beyond LightKone, depends also on exploratory activity done
within LightKone. A third reason for the exploratory work is to improve our understand-
ing of the area, to indicate the way for relevant future innovations.

6.1 Available file system

The basis for state of the art file systems is the Posix semantics, which is designed under
the assumptions of strong consistency and synchrony. This is safe but it underperforms
at large scale and it is unavailable during network partitioning. Real-world experience
shows that the synchrony assumption is too strong: concurrent updates to the same file
system objects are rare. Therefore, state of the art file systems, such as HDFS, NFS,
and PVFS, eschew the synchrony assumption and replace it by asynchronous replication.
However, these file systems may in some cases violate integrity invariants.

The file system we present here innovates with respect to the state of the art by guar-
anteeing integrity invariants while at the same time supporting asynchronous replication.
Our design is as asynchronous as possible while satisfying the invariants. We provide
two solutions beyond the state of the art:

• Fully asynchronous file system, which accepts all concurrent updates but weakens
sequential Posix semantics by duplicating directories that would otherwise end up
in a cycle.

• Mostly-asynchronous file system, in which most operations run asynchronously,
and only the move-directory operations might be blocked by synchronization.

This work is presented in the VMCAI 2018 paper (see Section 7.1). The work has several
goals. First, it is a practical application of the JRC methodology, and is used to strengthen
this methodology. Second, it is an extension of the state of the art in Posix-based file
system semantics, and as such can potentially be a useful LiRA component.

6.2 Quality-aware reactive programming

Quality-Aware Reactive Programming (Quarp) is a dataflow language for distributed
components, which is a variant of a reactive programming model tailored for lightweight
distributed systems (see FSEN 2017 paper in Section 7.1). In the reactive paradigm
concurrent objects can produce values that trigger the execution of other objects, in a
dynamic dependency graph. Shifting this paradigm from locally concurrent objects to
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concurrent components brings new challenges when managing consistency (called glitch-
freedom in this context) without incurring large performance overheads.

The key problem addressed by Quarp is how to optimise the reactive paradigm to
lightweight distributed components, i.e., systems where communication is unreliable and
where each node has a limited amount of memory space, computational power, and en-
ergy. Our approach enriches messages with contextual information about the where-
abouts of the data producers – with properties that allow these to be combined and com-
pared, and used as a local quality metric. This contextual information indicates compo-
nents whether the received inputs have enough quality (or enough compatibility) to be
used in their computation, and consequently to produce a new value to their subscribers.

In the context of LightKone, this paradigm fits well the light-edge scenarios. More-
over, the existing theory and implemented libraries for managing (eventual) data consis-
tency can form the basis of an implementation for quality-aware reactive systems. For
example, to optimise multicast communications, and to better maintain global quality
of a running system by iteratively adapting the local quality parameters of each compo-
nent. More information on the principles behind Quarp and on the integration of data
consistency follow below.

6.3 Rethinking distributed programming
The LightKone innovations are steps in the direction of abstracting away part of the
difficulty of building distributed systems, leaving visible only the essential aspects that
must remain visible. We are exploring going even further in this direction, to understand
how to strengthen the LightKone innovations. Here we present three explorations of
future distributed systems that can influence future LightKone developments.

(a) Lasp as a service composition language

Lasp can be seen as a service composition language. This is a way to use legacy libraries
for distributed services (e.g., consensus, analytics, communication, etc.) as part of the
run-time for Lasp. This solves the greenfield problem for edge computing: it is not
possible for us to reimplement all the legacy support for distributed computation, but
ideally we should be able to reuse it. The existing Lasp system is a first step toward this
solution: it composes several libraries including communication and orchestration.

This idea is expressed in two documents: a paper presented at the OBT 2018 work-
shop (see Section 7.2) and a keynote talk at the Velocity 2017 conference (see Section
8.1). The keynote defines a hypothetical language called Martinelli that realizes the ser-
vice composition idea. Instead of having to compose legacy libraries by hand, which is
what developers currently do, the Martinelli run-time system does this composition auto-
matically. This simplifies developers’ work while guaranteeing better semantics for the
whole.

(b) Edge computation as decentralized truth

In the traditional view of distributed applications, the contents of a centralized database
is considered to be the truth, i.e., the definitive correct data for the application. In reality,
however, the truth is not in the database, but distributed among the clients (at the edge),
and the database reflects this information with some staleness. We propose therefore to
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invert the traditional view and to consider the database as an optimization for the true
data at the edge. This idea is expressed in the Salon des Refusés 2017 paper (see Section
7.2).

Even though many applications treat the database contents as the truth, the database
is in fact just an optimization that approximates the correct data. We can say that the
database is eventually consistent with respect to client data. The LightKone vision of
convergent data supports this inversion. The LiRA programming model and its imple-
mentations support eventual consistent computation with convergence properties (i.e.,
divergence with the correct result always tends toward zero). In particular, our work on
heavy edge computing, based on the Antidote database, can directly support this new
approach.

(c) Distributed programming in the context of CAP

It is useful to explore the space of possible distributed programming models in the con-
text of the CAP theorem. The CAP theorem places rigorous limitations on the power of
distributed programming models. It shows that there are two extreme points in the spec-
trum of these models: AP (available and partition-tolerant, but not consistent), and CP
(consistent and partition-tolerant, but not available). Distributed programming models
can be classified on a spectrum from AP on one side to CP on the other side. This idea is
expressed in the PMLDC 2017 paper (see Section 7.2).

The Lasp programming model is AP: it is always possible to do computations locally
even when there are partitions, but there can be divergence between nodes. The Lasp
semantics guarantees that node data will converge to a consistent state. This suggests
that we can imagine another model, called Austere in the paper, at the other side of the
spectrum, namely it is CP. In a synthesis of both extremes, we combine both Lasp and
Austere to define a model called Spry, in which the trade-off between availability and
consistency can vary at different parts of the application.

7 Published papers

7.1 Refereed conference papers

• José Proença and Carlos Baquero. Quality-Aware Reactive Programming for the
Internet of Things, 7th IPM International Conference on Fundamentals of Software
Engineering (FSEN 2017), Tehran, Iran, April 26-28, 2017.
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tive Programming (PPDP 2017), Namur, Belgium, Oct. 9-12, 2017.

• Mahsa Najafzadeh, Marc Shapiro, and Patrick Eugster. Co-Design and Verification
of an Available File System. 19th International Conference on Verification, Model
Checking, and Abstract Interpretation (VMCAI 2018), Los Angeles, CA, Jan. 7-
13, 2018.
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1 Introduction

This document defines the first version of a formal abstract semantics for a general com-
putation model for synchronization-free computing. The semantics is based on the event
visibility formalism of Sebastian Burckhardt [1] and subsumes the Lasp and Antidote
computation models defined in the SyncFree project. This is a significant step toward
achieving a major goal of the LightKone project, namely defining a single computation
model that encompasses the full spectrum of synchronization-free computation.
In SyncFree we explored how to build large distributed systems where the basic data

structure is the CRDT, Conflict-Free Replicated Data Type, which is a distributed data
structure with the property that replicas eventually become consistent with each other.
CRDTs are based on a very weak synchronization model, namely eventual replica-to-
replica communication. No other synchronization is needed. We defined two very differ-
ent computation models and their implementations, namely Lasp and Antidote, that are
both based on CRDTs. Lasp is a dataflow computation model based on CRDT composi-
tion, i.e., it uses dataflow communication between CRDT instances. Antidote is a causal
transactional database where the basic data structure is the CRDT. Lasp runs naturally
on an edge network. Antidote runs naturally on a georeplicated data center.
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2 Abstract executions

We describe the system based on the events which happened on the system. Each event
has an operation op ∈ Ops and a result value r ∈ V. Each event works on one specific
object identified by a key k ∈ Keys. The key contains the type of the object (type(k)).
Moreover, an event can carry meta-data like a version or a transaction-identifier, which
we use to describe optional guarantees of our unified system model.

2.1 Internal view

To specify which executions are allowed, we use relations vis and ar. These relations are
not directly observable by clients, but we consider them part of the execution.
An execution is a tuple (E, key, op, res, vis, ar) where

• E is a finite set of events.

• key assigns a key to each event in E.

• op assigns an operation to each event in E.

• res assigns a result value to each event in E.

• vis is the visibility relation on events in E. We write e1 ≺vis e2 for (e1, e2) ∈ vis.
Intuitively, e1 ≺vis e2 means, that e1 happened before e2 and e2 can thus observe
the effects of e1.

• ar is the arbitration relation on events in E. We use it to break ties between
concurrent updates. In the implementation we mostly use extended timestamps.

The behavior of data types T is specified by a function FT which takes an operation
context and returns a result value. An operation context is a tuple (E, op, vis, ar) where

• E is the set of events on same key and in visibility

• args give the operation arguments for each event in E

• vis and ar are the relations from the execution restricted to the events in E

To get the operation context for an event e we use the function ctxt(e), which is defined
as: ctxt(e) =

(
E′, op|E′ , vis|E′ , ar|E′

)
where E′ = {e′ ∈ E | e′ ≺vis e}.

If c is a context, then c|k is the context restricted to key k, which is defined as:
(E, op, vis, ar)|k =

(
E′, op|E′ , vis|E′ , ar|E′

)
where E′ = {e ∈ E | key(e) = k}.

2.2 Conditions

An execution is correct, if it satisfies the following conditions:

Acyclic visibility vis is acyclic
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Arbitration is total ar is a total order

Eventual consistency There can only be a finite set of events on the same object that
not see a certain event.

∀e ∈ E. finite({e′ ∈ E | key(e) = key(e′) ∧ e 6≺vis e
′})

In addition to the conditions above, some Lightkone system satisfy some of the follow-
ing guarantees:

2.2.1 Key value store:

In a key-value store, the result of each read event can be explained by the operation
context of the read-operation:

Correct results (KV-Store) For all e ∈ E we have res(e) = Ftype(key(e))
(
op(e), ctxt(e)|key(e)

)

2.2.2 Causality:

Per object causal consistency for all keys k: vis|{e | key(e)=k} is transitive.

Causal consistency vis is transitive.

2.2.3 Transactions:

To model transactions, we assume that we know the transaction each event originated
from: tx(e) is the originating transaction of event e. We assume that all transactions are
committed. This is possible because we do not support isolation levels, where uncom-
mitted transactions can have any affect on events outside the transaction, and we do not
include time in our model.

Atomic visibility For events e1, e′1, e2, e′2 ∈ E with tx(e1) = tx(e′1) = tx1 and tx(e2) =
tx(e′2) = tx2 6= tx1 we have e1 ≺vis e2 ↔ e′1 ≺vis e

′
2.

Sequential transactions For all transactions t the relation vis|{e|tx(e)=t} is a total order.

2.2.4 Versioned Store:

For this extension, we assume that users can provide a version for each event (version(e)).
If no version is given by a user, version(e) = ⊥. Otherwise we will treat a version as a
set of events.

Min snapshot For all events e, e′: e′ ∈ version(e) implies e′ ≺vis e.

Precise snapshot For all events e, e′: e′ ∈ version(e) iff e′ ≺vis e.
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2.2.5 Session guarantees

We assume that events issued from the same session (in practice this can be a database
connection) are ordered by a session order so on events. e1 ≺so e2 if e1 was submitted
before e2 on the same session.
To define the classical session guarantees, we need to distinguish read and write oper-

ations. We use the predicates isRead(e) and isWrite(e) to do so.

Read Your Writes e1 ≺so e2 ∧ isWrite(e1) ∧ isRead(e2) −→ e1 ≺vis e2

Monotonic Reads e1 ≺so e2 ∧ isRead(e1) ∧ isRead(e2) −→ (∀e′. e′ ≺vis e1 → e′ ≺vis e2)

Writes Follow Reads e1 ≺so e2∧isRead(e1)∧isWrite(e2) −→ (∀e′. e′ ≺vis e1 → e′ ≺vis e2)

General session guarantee e1 ≺so e2 −→ e1 ≺vis e2

2.2.6 Lasp store:

To specify the Lasp semantics, we use additional meta data:

Lasp Objects We partition the key space into Lasp-objects and base-objects. The set
LaspKeys ⊂ Keys specifies, which keys identify Lasp-objects. All other keys refer
to base-objects.

Clients can only perform updates on base-objects, but they can read from both
kind of objects.

Link The function link specifies a Lasp-link for each Lasp-key. A Lasp-link consists of
a list of n keys, and a function f, which takes n values and returns a single value.

To give a better intuition about links, we give some examples of common operations.

map Let k be a key identifying an object with a set-value containing elements of
type T and f be a function T → S for some type S. Then map(k, f) is the
link reading the set from object k and applying f to all elements in the set.

map(k, f) := ([k], λV → {f(x) | x ∈ V })
product Let k1 and k2 be keys identifying objects with set-values. Then product(k1, k2),

which reads from both keys and yields the Cartesian product of the two sets.

product(k1, k2) := ([k1, k2], (λV1, V2 → V1 × V2}))
intersection intersection(k1, k2) := ([k1, k2], (λV1, V2 → V1 ∩ V2)})
union union(k1, k2) := ([k1, k2], (λV1, V2 → V1 ∪ V2)})
filter filter(k, P ) := ([k], λV → {x | x ∈ V ∧ P (x)})
fold Let k be a key identifying an object with a value of type T set, f : T ×S → S

be a function, and z an initial value of type S.

fold(k, f, z) := ([k], foldf,z)
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where foldf,z{} = z and foldf,z({x} ∪ V ) = f(x, foldf,z(V )).

The function f and value z have to be chosen, such that the order of evaluation
does not matter.

Convergence of Linked objects If a Lasp-object k1 depends on a base-object k2,
then the system ensures eventual consistency between the two. This means that an
update k2 cannot be invisible to an infinite number of read events on k1.
Formally, the set dependsOn(k) for Lasp-objects k is inductively defined:

• Direct dependencies: If link(k) = (K, f) then set(K) ⊆ dependsOn(k).

• Transitivity: If k1 ∈ dependsOn(k2) and k2 ∈ dependsOn(k3), then k1 ∈ dependsOn(k3).

Then eventual consistency of Links is defined by the condition:
∀e ∈ E. finite({e′ ∈ E | key(e) ∈ dependsOn(key(e’)) ∧ e 6≺vis e

′})

Reading from Lasp objects We now define how the result of read-operations is
determined. To do this, we define a function R, which takes a key k and an operation
context and returns the result value for the read operation.
For all e ∈ E we have res(e) = R(key(e), ctxt(e)).
The function R is defined recursively and distinguishes two cases:

• For reads on base-objects the semantics are determined by the datatype specifica-
tion, similar to the correctness condition of the key-value store (see 2.2.1):

If k 6∈ LaspKeys, then R(k, ctxt) = Ftype(k)

(
ctxt|k

)

• For reads on Lasp-objects, the result is determined by the link assigned to the
respective object.

If link(k) = ([k1, . . . , kn], f), then R(k, ctxt) = f(R(k1, ctxt), . . . , R(kn, ctxt)).

Cycles This definition can be used, if there are no cycles in the link-graph (or infinite
sequences in the link-graph). To support cycles, we determine the result by taking the
least fixed point of R’s equations.
To ensure that the least fixed point is well-defined, we assume that all values are part

of a complete lattice and we slightly adapt the equations for R to make them monotonic:

• If k 6∈ LaspKeys, then R(k, ctxt) = Ftype(k)

(
ctxt|k

)

• If link(k) = ([k1, . . . , kn], f), then R(k, ctxt) ⊇ f(R(k1, ctxt), . . . , R(kn, ctxt)).
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Session 1:

Session 2:

e1
add(K1, 1)

e2
add(K1, 2)

e3
add(K1, 3)

e4
add(K1, 4)

e5
read(K1) → {1}

e6
read(K2) → {2}

e7
read(K1) → {1, 2}

e8
read(K2) → {2, 4, 6}

Figure 1: Example 1: Abstract execution of a Lasp program

2.3 Example: A Lasp program

Consider the following Lasp program:
{ok, {K1, _, _, _}} = lasp:declare({<<"k1">>, state_orset}, state_orset),
{ok, {K2, _, _, _}} = lasp:declare({<<"k2">>, state_orset}, state_orset),
{ok, _ } = lasp:map(K1, fun(X) -> X * 2 end, K2).

This defines a base object with key k1 and a Lasp object with key k2 and link(k2) =
map(k1, λx→ x · 2) = ([k1], λV → {x · 2 | x ∈ V }).

Execution 1 The graph in Figure 1 shows an example of an abstract execution for
this Lasp program. Sessions are drawn as horizontal solid arrows and visibility between
events is visualized with dashed arrows. This example assumes causal consistency, so we
omit transitive visibility edges in the graph.
We now use the formal definition to explain why res(e8) = {2, 4, 6}.

• First we calculate the execution context of e8.

The set of visible events is E′ = {e1, e2, e3, e5, e6, e7}.
Then op|E′ = {e1 7→ add(1), e2 7→ add(2), e3 7→ add(3), e4 7→ read(), e5 7→ read(), e6 7→
read(), e7 7→ read()} and vis|E′ = {(e1, e2), (e1, e5), (e2, e3), (e2, e7), (e5, e6), (e6, e7)}+.
The arbitration relation ar is not relevant for this example.

ctxt(e8) = (E′, op|E′ , vis|E′ , ar|E′)

• The result is specified by the R function: res(e8) = R(k2, ctxt(e8)).

• Because k2 ∈ LaspKeys and link(k2) = ([k1], λS → {x · 2 | x ∈ S}), we have:

R(k2, ctxt(e8)) = (λS → {x·2 | x ∈ S})(R(k1, ctxt(e8))) = {x·2 | x ∈ R(k1, ctxt(e8))}

• As k1 is an add-wins set, we have:

R(k1, ctxt(e8)) = Faw-set(ctxt(e8))
= {x | ∃a ∈ E′. op(a) = add(x) ∧ @r ∈ E′. op(r) = remove(x) ∧ a ≺vis r}
= {1, 2, 3}

• With this we get, that R(k2, ctxt(e8)) = {x · 2 | x ∈ {1, 2, 3}} = {2, 4, 6}.
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Session 1:

Session 2:

e1
add(K1, 1)

e2
add(K1, 2)

e3
add(K1, 3)

e4
add(K1, 4)

e5
read(K1) → {1}

e6
read(K2) → {}

e7
read(K1) → {1, 2}

e8
read(K2) → {2}

Figure 2: Example 2: Abstract execution of a Lasp program

Execution 2 In contrast to the first execution, the graph in Figure 2 does not assume
session guarantees and thus allows the reads on K2 to observe fewer events than previous
reads did. Because session guarantees are not included, it is not necessary that e4 is
visible to e5, even though they happened on the same session. Therefore e5 can observe
a state, where e1 is not yet visible.

2.4 Example: Antidote

Executions on Antidote satisfy all 3 basic definitions and provide the following additional
guarantees:

• Causal consistency

• Atomic visibility

• Min snapshot (When starting a transaction, a minimum snapshot version can be
provided. On commit clients receive a version including the committed transac-
tion).

Antidote data types: To specify the antidote data types, we define the following
auxiliary functions:

filterResets(E, op, vis) = {e ∈ E | op(e) 6= reset()∧ 6 ∃r ∈ E. op(r) = reset() ∧ e ≺vis r}
latestEvents(E, vis) = {e ∈ E | 6 ∃e′ ∈ E. e ≺vis e

′}
max(E, ar) = the e ∈ E, such that ∀e′ ∈ E.e′ ≺ar e

With these functions we can define the semantics of the different data types:

Flww-reg(E, op, vis, ar) = let E′ = latestEvents(filterResets(E, op, vis), ar) in
if E′ = ∅ then ""
else = the v, such that op(max(E′, ar)) = assign(v)
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Fcounter(E, op, vis, ar) =
∑

(e,v). ∃e∈E. op(e)=increment(v)

v −
∑

(e,v). ∃e∈E. op(e)=decrement(v)

v

Ffat-counter(E, op, vis, ar) = Fcounter(filterResets(E, op, vis), op, vis, ar)

Few-flag(E, op, vis, ar) = let E′ = latestEvents(filterResets(E, op, vis), ar) in
∃e ∈ E′. op(e) = enable()

Fdw-flag(E, op, vis, ar) = let E′ = latestEvents(filterResets(E, op, vis), ar) in
∃e ∈ E′. op(e) = enable()∧ 6 ∃d ∈ E′. op(e) = disable()

Fg-set(E, op, vis, ar) = {x | ∃a ∈ E.op(a) = add(x)}

Faw-set(E, op, vis, ar) = let E′ = filterResets(E, op, vis) in
{x | ∃a ∈ E′. op(a) = add(x)∧ 6 ∃r ∈ E′. op(r) = remove(x) ∧ a ≺vis r}

Frw-set(E, op, vis, ar) = let E′ = filterResets(E, op, vis) in
{x | (∃a ∈ E′. op(a) = add(x))

∧ ∀r ∈ E′. op(r) = remove(x)→ ∃a ∈ E′. op(a) = add(x) ∧ r ≺vis a}

3 Concrete Executions

To reason about correctness of algorithms and protocols with respect to the abstract
semantics defined above, we use concrete executions. Here, we consider the concrete
state of nodes in the system and messages passed between nodes.

3.1 Background

In this section we summarize the general framework for modeling concrete executions.
The model is very close to Burckhardt’s model.
An implementation consists of several role instances, which represent a kind of actor

which can process client requests sequentially. Some role instances will be internal and
do not process any requests from clients. Role instances can communicate by sending
messages and they may contain active processes to execute actions periodically.

8



3.1.1 Role automata

The behavior of a single role instance is defined by a role automaton. A role automaton
is a set of transitions over a set of operations O, a set of values V a set of states Σ, a set
of messages M and a set of processes P .
Possible transitions are:

• init(σ′,Msent) with σ ∈ Σ and Msent ⊆M
Initializes the role instance.

• call(o, σ, σ′,Msent, v) with o ∈ O, σ, σ′ ∈ Σ, Msent ⊆M , and v ∈ (V ∪ ⊥)

Reacts to a call of operation o from a client.

• rcv(m,σ, σ′,Msent, v) with m ∈M , σ, σ′ ∈ Σ, Msent ⊆M , and v ∈ (V ∪ ⊥)

Reacts to receiving message m.

• step(p, σ, σ′,Msent, v) with p ∈ P , σ, σ′ ∈ Σ, Msent ⊆M , and v ∈ (V ∪ ⊥)

Actively do a step in process p.

In the following we use functions to select certain information from a transition t:
op(t) = o, rcv(t) = m, proc(t) = p, pre(t) = σ, post(t) = σ′, snd(t) = Msent, and
rval(t) = v. If the respective information does not exist for transition t the function
returns ⊥.
The set Msent is a set of messages sent to all other role instances. The value v is the

value returned to the last client call or ⊥ if there is no return value. A role automaton
can do several internal steps before replying to a client, for example it can send messages
to other instances and wait for responses before replying to the client.
A role automaton must satisfy the following properties:

(r2) There is at least one initialization transition.

(r3) All messages can be received in all states. (Role automata can ignore unwanted
messages or store them in their state for later processing.)

(r4) All operations can be called in all states.

(r5) All processes can take steps in all states.

3.1.2 Trajectories

A trajectory is a tuple (E, eo, tr) and models an execution of a single role automaton.
E is a set of events, eo is a total order on these events and tr is the transition of each
event.
As the events are totally ordered by eo, we can define what the predecessor of an event

is. The event without predecessor must have an init transitions. For all other events ei
with predecessor ei−1, the pre- and post-states must match: pre(tr(ei)) = post(tr(ei−1))
Moreover, there can be at most one pending call at a time, and events can only have

a result value if there is a pending call.
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3.1.3 Concrete Executions

Having defined possible trajectories for describing possible behaviors of a single role
automaton instance, we can now define concrete executions, which combine a (possibly
infinite) set Roles of such instances.
A concrete execution is a tuple (E, eo, tr, role, del), such that:

(c1) eo is a total order on E.

(c2) tr specifies the transition of each event.

(c3) role specifies a role from Roles for each event.

(c4) For each role r, the tuple (Er, eo, tr) is a valid trajectory with respect to the
automaton of r. Here Er is the events in instance r: Er = {e ∈ E | role(e) = r}.

(c5) del is a relation on events describing message delivery.

If s del−−→ r, then s eo−→ r, rcv(r) 6= ⊥, and rcv(r) ∈ snd(s).

We also write s
del(m)−−−−→ r to denote that message m has been sent from s to r, i.e.

s
del−−→ r ∧ rcv(r) = m.

3.1.4 Transport guarantees

Similar to the conditions for abstract executions (see Section 2.2), we can define message
delivery guarantees, which we can assign to certain classes of messages and which must
be guaranteed by the underlying network stack.

• dontforge

• dontduplicate

• dontlose

• pairwiseordered

• reliable, reliablestream

• eventual

• eventualindirect

3.1.5 From concrete to abstract executions

Given a concrete execution, we can derive an observable history, by only considering
events related to calls from client.
If there exist vis and ar relations, such that the observable history can be extended to

a valid abstract execution, then the the concrete execution is correct.
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3.1.6 Describing protocols

3.2 Protocols

Following Burckhardt’s verification approach, we define protocols for the different actors
(or: roles) in the system. Roles are defined as state machines. Interaction between roles
involves the sending and receiving of messages, including the required message delivery
guarantees.
We show here as first example the protocol for a causally consistent CRDT store

(adapted from Burckhardt Fig. 6.13, there named CausalStreams).
protocol CausalCRDTStore< 〈F〉 {
// vector clock
type VClock = map〈int,int〉;
// returns maximal entry of vc
function max(vc: VClock) { return vc.values().max(); }

// updates
struct Update(op: Operation, vc: VClock)
// max entry in vector clock reveals sender of update
function origin(u: Update) { return u.vc.key_of_max_value; }
function visibleTo(vc1: VClock, vc2: VClock) {
return ∀ i: vc1[i] ≤ vc2[i];

}
function arbitedBefore(1: Update, u2: Update) {
return max(u1.vc) < max(u1.vc)

|| max(u1.vc) = max(u2.vc) && origin(u1.vc) < origin(u2.vc); }
}

message Notify(update: Update, vc: VClock) : reliablestream

role Replica(pid: int) {
var known: set〈Update〉;
var vc: VClock;
var pending: map〈nat, queue〈Update〉〉;

// client issues operation
operation perform (op: Operation) {
// calculate return value based on local context
var rval = F(op, makecontext(known, arbitedBefore, visibleTo));
// advance logical clock
vc[pid] = max(vc) + 1;
// contruct update struct
var u = Update(op, vc);
// add to locally known updates
known.add(u);
// forward to other replicas
send Notify(u, vc);
// return result to client
return rval;

}

// updates forwarded by other replica are added to local buffer
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receive Notify(u) {
pending[origin(u.vc)].add(u);

}

// apply updates from buffer in causal order
periodically for (sender: int) {
if(forall i: (i=sender) || vc[i] ≥ pending[sender].next.vc[i]) {
var u = pending[sender].dequeue();
known.add(u);
vc[sender] = u.vc[sender];

}
}

}

}
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1 System State

There is a set of programs running concurrently and interacting with Antidote. We write
p to refer to a single program.
We treat programs as abstract state transition systems. The implementation of a

program p is given by a transition function fp which takes the current local state and
returns the action to perform. An action is one of the following:

localStep(ls′) Perform a local step to state ls′.

beginAtomic(ls′,depTxn) Start a transaction with transaction depTxn as causal depen-
dency. The transaction snapshot is guaranteed to include depTxn.

endAtomic(ls′) Commits the current transaction. The function ls′ uses the identifier of
the committed transaction to calculate the new local state.

dbOperation(ls′, op) Calculates a database operation op to perform. The function ls′

uses the result of the database call to calculate the new local state.

The configuration of a whole system (denoted by C in the following) consists of the
local states of the programs together with the database state. We do not model the
database state explicitly to allow for multiple implementations. Instead, we model the
database state as the set of database-calls together with the happens-before relation on
the calls. The concrete parts of configurations are listed below:

localState(p) The local state of program p

currentTransaction(p) The current transaction in program p

committedTransactions The set of committed transactions

calls(c) The information about database-call c. Is either ⊥ or a pair (op, res) of oper-
ation and result. For database-updates, which do not have a result, we just write
down the operation and omit the result.

The operation contains the key of the addressed object.
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callOrigin(c) The originating transaction for call c.

visibleCalls(t) The set of calls visible to a transaction t

happensBefore The happens-before relation between database-calls

2 Operational Semantics

The rules of the operational semantics are given in Figure 1. Before giving an intuition
about the rules, we explain the notation used in the rules:

• C
p,a−−→ C ′ denotes that the system makes a step from configuration C to C ′ by

executing a in program p.

• C
tr−→*C ′ denotes that the system makes zero or more steps from configuration C

to C ′ by executing trace tr.

• The function querySpec specifies the result for database operations based on a given
operation context. For example the contains-operation of an add-wins set s could
be specified as:

querySpec(C, contains(s, x)) =
∃ca. calls(C, ca) , add(s, x)
∧ @cr. calls(C, cr) , remove(s, x) ∧ (ca, cr) ∈ happensBefore(C)

• The operation context is a part of the state restricted to the set of visible calls in
a transaction:

operationContext(C, t) =

[
calls = calls(C)|visibleCalls(t)

happensBefore = happensBefore(C)|visibleCalls(t)

]

• S ↓R is the downwards-closure of set S with respect to relation R.
S ↓R= {x | ∃y ∈ S : (x, y) ∈ R∗}

• x , y is short for x = y ∧ y 6= ⊥

2.1 Intuition

It is always possible for one of the programs to perform a local step (rule local), which
models local computations of the program without database interaction.
The three remaining rules for single-steps model the interaction of programs with the

Antidote database. All database-operations are performed within a transaction in our
model1.
Transactions in Antidote work on a causally consistent snapshot. We model a snapshot

as the set of database calls, which are visible in the given transaction. When a transaction
1Antidote also supports requests outside of interactive transactions, but those are merely performance

optimizations and behave as if they were executed in their own transaction
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localState(C, p) , ls fp(ls) = localStep(ls′)

C
p,local−−−−→ C

[
localState(p) := ls′

] (local)

localState(C, p) , ls fp(ls) = beginAtomic(ls′, depTxn)
currentTransaction(C, p) = ⊥ t fresh txns ⊆ committedTransactions(C)

depTxn = ⊥ ∨ depTxn ∈ txns vis = {c | callOrigin(C, c) ∈ txns} ↓happensBefore(C)

C
p,beginAtomic−−−−−−−−→ C




localState(p) := ls′

currentTransaction(p) := t

visibleCalls(t) := vis




(begin-atomic)

localState(C, p) , ls fp(ls) = endAtomic(ls′) currentTransaction(C, p) , t

C
p,endAtomic−−−−−−−→ C




localState(p) := ls′(t)

currentTransaction(p) := ⊥
committedTransactions := committedTransactions(C) ∪ {t}




(end-atomic)

localState(C, p) , ls fp(ls) = dbOperation(ls′, op) currentTransaction(C, p) , t

c fresh res = querySpec(operationContext(C, t), op) visibleCalls(C, t) , vis

C
p,dbOp−−−−→ C




localState(p) := ls′(res)

calls(c) := (op, res)

callOrigin(c) := t

visibleCalls(t) := vis ∪ {c}
happensBefore := happensBefore(C) ∪ vis× {c}




(DB-operation)

C
ε−→*C

(steps-empty)
C1

tr−→*C2 C2
a−→ C3

C1
tr·a−−→*C3

(steps)

Figure 1: Fine-grained interleaving semantics

is started (rule begin-atomic), we determine the transaction snapshot as follows: We
first (nondeterministically) pick a set of already committed transactions (txns) for the
snapshot. If the program provided a dependent transaction (depTxn), it is guaranteed
to be included in this set of transactions. Then the set of visible calls for the snapshot is
determined by taking all database calls which originated (callOrigin) in one of the chosen
transactions (txns) and adding their causal dependencies ({. . . } ↓happensBefore(C)).
The steps above provide some nice guarantees:
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1. We only consider committed transactions, which provides a weak form of isolation.
Concurrent transactions do not affect another running transaction. However, we
do not have full isolation (as in serializability) as the snapshot might give a stale
view on the database.

2. We can only pick complete transactions, which ensures that transactions are atomic:
Either all calls or no calls of a transactions are visible.

3. The snapshot is guaranteed to be causally consistent as we include all causal de-
pendencies based on the happens-before order.

4. By giving a dependent transaction, the program can influence session-guarantees.
If the program provides the last transaction it has performed, it is guaranteed
that the program observes its previous writes, that reads are monotonic, and that
operations are performed in causal order (i.e. Read Your Writes, Monotonic Reads,
Writes Follow Reads, and Monotonic Writes are all guaranteed).

When a transaction is committed (rule end-atomic), we simply add the transaction to
the set of committed transactions. The transaction-identifier is returned to the program
and can be used by the program to determine the next local state.
Executing an operation inside a transaction (rule DB-operation) is handled as follows:

We first extract the operation context from the current state. The operation context
consists of the database calls and the happens-before relation restricted, where both
are restricted to the set of currently visible calls in the transaction. We then pass this
context and the database-operation to the querySpec-function, which yields the result of
the database operation.
Intuitively, the querySpec-function is a CRDT-specification. As the function only de-

pends on the context and the operation, it is clear that there must be a CRDT imple-
mentation for every computable querySpec-function: The naive implementation simply
records the history and applies the specification function. The reverse is also true2:
Every CRDT implementation can only depend on the operations it has observed and
since CRDTs are convergent there must be a deterministic function describing the re-
sult of queries, independent of the order in which operations where applied, only the
happens-before order is relevant.
When an operation is executed, the result can be used by the program to determine its

next local state. Additionally we add the call to the visible calls of the current transaction
and record the operation in the history by updating calls, callOrigin, and happensBefore.
The happens-before relation then includes an edge from all currently visible calls to the
new call. This captures potential causality.

2If we ignore CRDTs which use additional information like timestamps. To model those, the semantics
described here could easily be extended.
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