
Project no. 732505
Project acronym: LightKone
Project title: Lightweight computation for networks at the edge

D3.2: Runtime System for Edge Computing with
Application Support

Deliverable no.: D3.2
Title: Runtime System for Edge Computing with Application Support
Due date of deliverable: January 15, 2019
Actual submission date: January 15, 2019

Lead contributor: INESC TEC
Revision: 2.0
Dissemination level: PU

Start date of project: January 1, 2017
Duration: 36 months

This project has received funding from the H2020 Programme of the European Union

LightKone Deliverable D3.2(v2.0), January 15, 2019

Revision Information:

Date Ver Change Responsible
15/01/2019 2.0 Revision ready for submission INESC TEC
15/10/2018 1.1 Revision started INESC TEC
27/06/2018 1.0 Ready for submission INESC TEC

Revision information is available in the private repository https://github.com/LightKone/
WP3.

Contributors:

Contributor Institution
Ali Shoker INESC TEC
João Marco Silva INESC TEC
Georges Younes INESC TEC
Annette Bieniusa TUKL
Peter Van Roy UCL
Igor Zavalyshyn UCL
Vitor Enes INESC TEC
Carlos Baquero INESC TEC
Adriaan Leijnse INESC TEC
Sébastien Merle STRITZINGER
Adam Lindberg STRITZINGER
João Leitão NOVA
Nuno Preguiça NOVA
Pedro Ákos Costa NOVA
Pedro Fouto NOVA

LightKone D3.2(v2.0), January 15, 2019, Page 2

https://github.com/LightKone/WP3
https://github.com/LightKone/WP3

Contents

1 Executive Summary 1

2 Introduction 3
2.1 General Motivations and Approach . 3
2.2 Contributions . 4
2.3 Relation to other WPs . 5
2.4 Summary of Deliverable Revision . 5
2.5 Organization of the Report . 5

3 Plan and Progress 7
3.1 Plan and Milestones . 8

3.1.1 Plan for the first half of Year 2 8
3.1.2 Plan for the second half of the project 8

3.2 Understanding CRDT Models . 9
3.2.1 Overview on Conflict-free replicated data types 9
3.2.2 Advanced CRDTs . 10
3.2.3 Towards a model-agnostic CRDTs 11

3.3 Further Progress on CRDT Models . 11
3.3.1 Pure Operation-based CRDTs at the edge 11
3.3.2 State-based CRDTs at the edge 12

3.4 Communication Abstractions for Edge Computing 14
3.4.1 End-to-End Causal Delivery . 14
3.4.2 Progress on Communication Layer Abstractions 16

3.5 Towards Partial Replication at the Edge 18
3.5.1 From Saturn to Gesto: towards partial replication at the edge . . . 18
3.5.2 Practical Causal Consistency for Geo-replicated Stores 19

3.6 List of Software and Prototypes . 23
3.7 Advancing state of the art . 24

4 Threat Analysis for LightKone Use-cases 27
4.1 UPC - Coordination between servers and data storage for the Guifi.net

monitoring system . 28
4.1.1 Scality - Pre-indexing at the edge 29
4.1.2 Stritzinger - No-Stop RFID . 31
4.1.3 Gluk - Self-sufficient precision agriculture management for irri-

gation . 33

3

CONTENTS

5 Exploratory Research 35
5.1 A model-agnostic CRDT definition language 35
5.2 Securing Smart Hubs through N-Version Programming 39

5.2.1 Edge Hub Architecture based on N-Version Trusted Functions . . 40
5.2.2 Detection of Unit Result Divergence 40
5.2.3 Nondeterministic Inputs . 41
5.2.4 Main Findings . 41
5.2.5 Discussion . 42

5.3 BISEN: Efficient Boolean Searchable Symmetric Encryption 42
5.3.1 Solution . 43
5.3.2 Technical Overview . 44
5.3.3 Discussion . 45

6 Annotated Publications & Dissemination 47
6.1 Dissemination . 48

Bibliography 49

A Threat Model of LightKone use-cases 53

LightKone D3.2(v2.0), January 15, 2019, Page 4

Chapter 1

Executive Summary

This deliverable (D3.2) presents the data and communication abstractions and compo-
nents that can be used to build a generic edge computing runtime, as well as the cross-
cutting concerns of LightKone work packages (WPs). LightKone advances state of the
art of edge/fog computing through providing highly available and scalable replicated
data management following the recent advances of Conflict-free Replicated DataTypes
(CRDTs) and their supporting dissemination middlewares. Consequently, in this deliv-
erable, corresponding to work package 3 (WP3), we convey the novel contributions on
CRDTs as well as the underlying dissemination layer. Most of the works are progress to
the work done started in Year 1, and delivered in D3.1. The report also presents a secu-
rity threat analysis to LightKone use cases. The core contributions can be summarized as
follows:

Data Abstractions. We continued the work to improve the efficiency of CRDTs
through compressing the meta-data and thus reducing storage and dissemination. We
have also started exploring a new model-agnostic approach to build CRDTs by compos-
ing basic primitive types.

Communication Protocols. We continued improving the causal middleware we
started in D3.1 by optimizing the internal data structures for tagging operations. This was
inspired by another study we made to present the pitfalls of classical implementations.
We also continued the work on delta synchronization protocols and Partisan communica-
tion library through presenting their empirical evaluations.

Partial Replication. We continued the work started on Saturn’s partial replication
through extending it in two directions. The first (C3) to include more parallelism inside
datacenters or heavy edge clusters, and the second (Gesto) that significantly lowers the
intra-region migration latency at the cost of slightly increasing the size of the metadata.

Threat analysis. We provide a full security threat analysis to LightKone use cases.

The report also presents exploratory research not at the core of LightKone, and presents
the software deliverables.

1

CHAPTER 1. EXECUTIVE SUMMARY

LightKone D3.2(v2.0), January 15, 2019, Page 2

Chapter 2

Introduction

With the immense volumes of data generated and computed at the data centers and cloud
servers, there is a need to move part of storage and computation towards the edge of the
network. Indeed, the benefits turned out to be many, among them to: reduce the load on
the data centers, reduce the amount of data traveling across continents, and improve the
availability security of data, etc. However, the edge computing approach brings its own
challenges like scalability, heterogenity, resilience, and security. In WP3, we develop
the data abstractions and communication protocols that address the above challenges and
support building generic edge computing runtimes as those developed in WP5 and WP6.

2.1 General Motivations and Approach

Contrary to Fog Computing [43], where sharing data is done through upper fog layers,
the challenge we address in LightKone is to have the data and computation laterally dis-
tributed over loosely coupled machines without violating the semantics and properties
of the applications. Having loosely coupled machines is crucial to provide availability
even if parts of the network or nodes are unreachable, due to the fragile networks and
commodity hardware used at the edge (contrary to data centers that are very well en-
gineered and thus exhibit low failure rates). This strongly suggests using a relaxed data
model provided that concurrent updates follow a clear conflict resolution mechanism. An
interesting approach is to use Conflict-free Replicated DataTypes (CRDTs) [39] that are
proven to ensure convergence in geo-replicated settings. In LightKone, we build on the
success of CRDTs and extend them to address the new challenges at the edge consider-
ing the related subjects of dissemination and performance. In this work package (WP3),
we focus on building the generic data and communication abstractions for developing
generic edge computing runtimes. Building on these abstractions, WP5 and WP6 focus
on how to build systems for light and heavy edge settings, respectively.

During the first year of LightKone, WP3 focused on scalability and efficiency at the
edge, providing the initial data abstractions and communication protocols. This very
deliverable, i.e., D3.2, is an extension to D3.1 presenting the progress of previous tasks
with focus on convergence and communication for edge application support, and security
specification and corresponding security models.

3

CHAPTER 2. INTRODUCTION

2.2 Contributions

We summarize the key contributions of WP3 for the first six months of Year 2 (Y2). The
contributions follow a plan that roughly follows the LightKone proposal with more details
as presented in Chapter 3. These contribution can be summarized by the following.

In Section 3.1.2, we start presenting the data abstractions for edge computing fo-
cusing on the Conflict-free Replicated Data Types (CRDTs) [39] approach. CRDTs
represent the main data ingredient within LightKone as they guarantee convergence in
a relaxed consistency models. While CRDTs are already in use in geo-replicated sys-
tems, the challenges at the edge are different due to hostile edge networks, scalability,
and constrained devices. In deliverable D3.1, we targeted CRDT data abstractions that
are tailored towards generic edge computing by addressing some of the mentioned chal-
lenges. In particular, we focused on improving the scalability and efficiency of the two
CRDT models, i.e., state-based and operation-based, which can be used in different edge
networks and under different assumptions. During these six months, and in addition
to improving these models, we were able to understand the edge application space and
patterns more by studying the formalizations in deliverable D2.2.

In particular, and to further understand the CRDT models, the consortium published
several works on the fundamentals of CRDTs and the different models (state-based,
operation-based, delta based, and pure operation-based), showing their properties and
relation between them. Beyond CRDT models, the consortium introduced a novel model-
agnostic language to define CRDTs regardless of the underlying infrastructure, and thus
lead to better interoperability in data abstractions of different systems, and maybe address
hybrid edge networks.

The above data abstractions rely on a communication layer that guarantees specific
assumptions and properties. More specifically, modern applications edge applications
adopt relaxed consistency models and thus tolerate reading stale data for better response
time; however, many applications resort to causal consistency as the strongest relaxed
consistency model that supports available applications, and provides intuitive applica-
tion logic (e.g., respects dependencies). In Section 3.4, we emphasize this requirement
and we present the contributions towards providing communication middlewares and ab-
stractions that can provide causal consistency, delivery, and stability. Furthermore, we
present the progress on communication causal middlewares and Partisan library started
in deliverable D3.1, focusing on the implementation and evaluation details.

In addition, given the limited capacities of the constrained edge devices in many use-
cases, it is not affordable to store big amounts of data, and thus there is a need to partition
the data across edge nodes and use relaxed consistency acorss partitions to improve avail-
ability. To address this issue, we addressed in Section 3.5 the limitations of Saturn at the
edge and developed another version called Gesto. Gesto uses partial replication with ef-
ficient meta data handling to improve the performance inside and outside a datacenter
or heavy node. In line with this work, we extended Saturn, in C3, to allows for higher
concurrency inside a datacenter or a heavy edge, thus boosting its availability.

In Sections 3.6 and 3.7 we present the software components in which part of the above
works is implemented, and we conduct a literature review highlighting how this report
advances state of the art.

In the final two chapters, we present a summary of the security analysis that is fully
included in the Appendix. In particular, we studied the use case formalization in deliv-

LightKone D3.2(v2.0), January 15, 2019, Page 4

CHAPTER 2. INTRODUCTION

erable D2.2, and we provided a thorough threat model analysis to LightKone use-cases.
We also tried to give security recommendations to use from state of the art. Finally, we
present further exploratory research that is not at the core of LightKone. The works are
mainly on the development of CRDTs and security contributions. We discuss the relation
of these works to LightKone.

2.3 Relation to other WPs
This work package addresses the cross-cutting concerns across all other work packages
and thus it has a natural overlap with most of them. The data and communication abstrac-
tions in this wor stand as generic components and techniques to build light and heavy
edge runtimes as in WP5 and WP6. For instance, the designed CRDT libraries in this
deliverable represent the building blocks of the data models in D4.1 and implementations
in D5.1 and D6.1. In particular, AntidoteDB is developed in WP6 and uses the optimized
op-based CRDTs, whereas Lasp and Legion developed in WP4 and WP5 uses the delta-
and state-based CRDTs. Similarly, some of the communication protocols developed in
WP3 like Partisan is being used as the underlying communication layer of Lasp. Finally,
the security analysis in this deliverable builds on the use cases presented in D2.1 and
formalizations in D2.2.

2.4 Summary of Deliverable Revision
This deliverable has been revised since its original submission to incorporate comments
and modifications requested by the European Commission Reviewers. The main changes
made to the deliverable are as follows:

• Introduced a literature review section in which we explain the advancement beyond
state of the art.

• Introduced the plan we followed in Year 2 and the future plan to achieve the men-
tioned milestones.

• Revised most sections to improve presentation with relative mentioning to SOTA,
the contribution, how it advances beyond SOTA according to the plan, and the
respective future plan.

• Removed all publications in the appendix (with the exception of the threat analysis
of use cases), and dedicated a section for dissemination activities carried in the
context of this work package.

2.5 Organization of the Report
The rest of the report is organized as follows:

Chapter 3: Plan and Progress presents the plan we followed in WP3 and the work
progress considering the data and communication abstractions and partial replication.

LightKone D3.2(v2.0), January 15, 2019, Page 5

CHAPTER 2. INTRODUCTION

The chapter also presents the advances beyond state of the art as well as the software
deliverables list.

Chapter 4: Security Analysis of Use-cases presents the summary of LightKone use
case security analysis.

Chapter 5. Exploratory Research presents other research works that are minor to
LightKone.

Chapter 6: Annotated Publications & Dissemination presents a synopsis of the
publications and dissemination in WP3.

And finally, Appendix A includes the full security analysis of Chapter 4.

LightKone D3.2(v2.0), January 15, 2019, Page 6

Chapter 3

Plan and Progress

Data abstractions are at the heart of edge computing in LightKone. Unlike classical Peer-
to-Peer (P2P) system that managed mostly immutable data, the essence of LightKone
is to support mutable data at the edge of the network. To this end, LightKone adopts
the synchronization-free approach in Conflict-free Replicated Data Types (CRDTs) [41]
that is proven successful in geo-replicated systems: it favors availability without com-
promising global data convergence. To some extent, distributed data in edge computing
can be seen as an extension to approaches used in geo-replicated systems, with the need
to consider a much larger number of devices, their capacity, network bandwidth, mobil-
ity, and heterogeneity. This poses new challenges that require a better understanding of
the different CRDT models and extension for addressing different requirements. In this
chapter, we introduce the main contributions on data abstractions for edge computing,
mainly through using CRDTs, addressing the three main categories: light, heavy, and
hybrid edge. In particular, we focus on improving the CRDT models for addressing the
challenges of different edge scenarios and use-cases.

We start this chapter by providing the plan we followed during the past six months
as well as the one we will follow in the rest of the project. We organize this chapter into
four main sections. The first section depicts novel works towards understanding the fun-
damentals and models of CRDTs. Fundamentals of CRDTs are important to develop new
variants and models that support edge use-cases and applications. This section, being at
the very begining, serves as a background to understand the following works. In the
same section, we go further and show that model-agnostic CRDTs can be an alternative
to compose CRDTs from few primitive types. While state-based and op-based CRDT
variants can be used in light and heavy edge, model-agnostic CRDTs help on the inter-
operability of these models which can be useful in the hybrid edge. The second section
presents a progress report to two CRDT variants: the Pure op-based and the Delta state-
based CRDT models presented in D3.1, focusing on implementations and evaluations.
The third section presents the communication middlewares supporting the above models
focusing on application level properties like causal consistency. In the fourth section,
we address the scaling challenges of CRDTs at the edge. We present two extensions to
the partial replication model of Saturn started in Year 1. We finaly present the software
deliverables and the advancement beyond state of the art.

7

CHAPTER 3. PLAN AND PROGRESS

3.1 Plan and Milestones
We first present the plan we followed during these six months of Year 2 and the plan we
put for the rest of the project. The plan continues the development of the data and com-
munication abstractions of generic edge runtime with application-level support focusing
on data convergence and consistency. Our plan is often consistent with that presented in
the original proposal (unless explicitly mentioned otherwise) and deliverable D3.1. We
also took into consideration the support for generic edge computing runtimes considering
the LightKone use cases and pushing the envelope further to explore and understand the
potential of LightKone technology beyond our use cases. We believe that is important to
create more impact and innovate.

3.1.1 Plan for the first half of Year 2
At the end of Year 1, we introduced the basic data and communication abstractions neces-
sary to build generic edge runtimes. We also identified three interesting edge/fog model
considering the use cases analysis and their application support. We concluded that con-
sidering the different use cases, three patterns for edge/fog applications can be identified.
The first is Heavy edge where applications communicate and use data across fog nodes,
i.e., north-south in both directions. The second model is Light edge where edge nodes
communicate and share data laterally, at the same edge/fog level, a.k.a., east-west. We
also identified an interesting Hybrid edge model in which applications include both north-
south and east-west communication and data sharing (replication) patterns. In this vein,
in the first six months of Year 2, we planned to continue our work through addressing the
application semantics already started in Y1. In particular, we wanted to continue improv-
ing the efficiency of the different CRDT models through optimizing the datatypes, mainly
the pure operation-based and delta-state CRDTs, as well as their underlying communi-
cation layer. Our aim was to focus on the impact of the causal broadcast on concurrent
applications and identified potential implementation pitfalls. We also planned to evaluate
the state synchronization in the delta CRDT model and conduct empirical assessment to
the performance of Partisan library. We also continued the work started on partial replica-
tion by addressing correctness and edge-tailored featured identified in the previous report
D3.1. Finally, we planned to conduct a full security analysis to the LightKone use case
threat models as cotinuation of the work doen in D3.1.

3.1.2 Plan for the second half of the project
Considering the comments of the reviewers of the European Commission, the plan for the
second half of the project was subject to an update to design the Reference Architecture
(LiRA) that governs the entire project. This work was part of WP3, and was presented
as a revision for deliverable D3.1. Our plan for the end of Year 3 is to improve the per-
formance and resilience of the developed protocols. Specifically, we aim to increase the
scalability of CRDTs (to the number of edge nodes) to one order of magnitude. Current
CRDTs often include meta data as version vectors that scale linearly with the size of
edge network. We are planning to explore the idea of identity containment introduced in
Handoff counters in D3.1. This will also bring other benefits in inter-operability across
edge models. Another direction to address scalability is through extending the idea of

LightKone D3.2(v2.0), January 15, 2019, Page 8

CHAPTER 3. PLAN AND PROGRESS

Borrow Counters developed in Year 1 to other datatypes. The purpose is to mitigate the
identity explosion problem especially once nodes are transient or upon high churn rate. In
line with this work on dynamic networks, we aim to develop CRDTs that can adapt with
churn, e.g., using elastic version vectors. Finally, we will explore the potential of Hybrid
edge applications defined in the previous chapter building on the outcome of WP5 and
WP6 on Light and Heavy edge. A potential direction is to explore the EdgeAnt approach
started in WP6. EdgeAnt supports data sharing across edge nodes at different levels and
there is plan to extend this to include lateral data sharing at the same edge level. At
the end of the project, we will deliver packaged libraries and protocols that can be used
beyond LightKone.

3.2 Understanding CRDT Models

As a major building block for data abstractions in LightKone, Conflict-free replicated
data types (CRDTs) [41] are yet to be fully understood especially at the Edge. Conse-
quently, the consortium is in a continuous search for new models that are more efficient,
sustainable, and easy to understand and implement. In this section, we present some of
the works in that direction. The first explores CRDT fundamentals in a comprehensive
way, the second goes deeper into advanced CRDT models, and the third presents a novel
abstract conceptional model-agnostic approach to compose CRDTs given few primitive
CRDTs.

3.2.1 Overview on Conflict-free replicated data types
Distributed systems often replicate data at multiple location for providing fault-tolerance,
high availability and low latency. Systems that adopt a weak consistency model provide
high-availability and low latency, by allowing a client to contact a single replica, which
can execute the client’s operation without coordinating with other replicas. This may lead
replicas to temporarily diverge, requiring a mechanism for merging concurrent updates
into a common state.

Conflict-free Replicated Data Types (CRDT) provide a principled approach to address
this problem. A CRDT is an abstract data type, with a well defined interface, designed
to be replicated at multiple nodes and exhibiting the following properties: (i) any replica
can be modified without coordinating with any other replicas; (ii) when any two replicas
have received the same set of updates, they reach the same state, deterministically, by
adopting mathematically sound rules to guarantee state convergence.

Conflict-free replicated data types (CRDTs) are at the core of the solutions adopted
in this project. Members of this project have proposed the concept, first by proposing a
CRDT for concurrent editing [37] and later laying the theoretical foundations of CRDTs
[41]. Since then, CRDTs have become mainstream and are used in a large number of
systems serving millions of users worldwide. Currently, an application can use CRDTs
by either using a storage system that offers CRDTs in its interface1, by embedding an

1Examples of storage systems that offer CRDTs in their APIs include Riak dis-
tributed database (http://basho.com/products/riak-kv/), Redis CRDBs (https://redislabs.
com/redis-enterprise-documentation/developing/crdbs/) and Akka distributed data (https:
//doc.akka.io/docs/akka/current/distributed-data.html).

LightKone D3.2(v2.0), January 15, 2019, Page 9

http://basho.com/products/riak-kv/
https://redislabs.com/redis-enterprise-documentation/developing/crdbs/
https://redislabs.com/redis-enterprise-documentation/developing/crdbs/
https://doc.akka.io/docs/akka/current/distributed-data.html
https://doc.akka.io/docs/akka/current/distributed-data.html

CHAPTER 3. PLAN AND PROGRESS

existing CRDT library or implementing its own support.
During this period, members of the project have written several documents that present

CRDT for general audiences, namely: (i) an entry on CRDTs for the Encyclopedia of Big
Data Technologies [39]. (ii) an overview on CRDTs, as part of the documents produced
by Nuno Preguiça for obtaining the Agregação em Informática degree (similar to Habil-
itation in Computer Science) [38].

These documents present on overview of CRDT’s research and practice, and they
have been written with the purpose of serving as a tutorial for general audiences and as a
survey for researcher.

3.2.2 Advanced CRDTs

CRDTs follow two different approaches which both lead to convergence (eventually) [41].
The first is the operation-based (i.e., op-based) model in which operations are dissemi-
nated to other replicas via a reliable causal middleware. The second model is the state-
based model, that builds the state as a join semi-lattice where special functions, called
mutators, use the application operations to inflate the state; in this model, the entire state
is propagated and merged remotely.

Besides these two base model, there have been proposals of other CRDT models,
with the most known being the Pure op-based CRDTs [8] and the delta-state (simply
delta) CRDTs [3]. The pure op-based model is a variant of op-based CRDT where the
disseminated data is “only” the operation submitted by the client (by opposition with
the classical op-based CRDT, where the propagated operation can be a modified version
generated after accessing the current object state). Upon receipt, the operations are stored
in a partial-ordered log (POLog) and enter into a pruning process to reduce the state to a
compact one. The delta CRDT model improves on the state-based model by propagating
only “recent updates” rather than the entire state. This brings significant benefits on
bandwidth utilization.

The above four models represent the leading edge of CRDTs, and therefore, there is
a need for more understanding and dissemination to improve their adoption. Inline with
this, we are in the final stages of publishing a section on CRDTs in the NESUS Action 2

book on ultrascale computations, within the “Data Management Techniques” chapter (to
appear) (to appear).The contribution presents the four models in an incremental way fol-
lowing a common example across the chapter. The aim was to help the reader understand
the models and their differences in an easy and comprehensive way. The contribution
also included an application section to a distributed object oriented framework, called
dataClay 3 that tackled two points:

• a simple implementation of a Counter CRDT showing how it integrates in the sys-
tem; and

• applying the concept of causal stability to activate distributed class versions con-
sistently.

2EU NESUS Action: http://www.nesus.eu/
3dataClay: https://www.tdx.cat/bitstream/handle/10803/405907/TJMF1de1.pdf?sequence=1&

isAllowed=yi

LightKone D3.2(v2.0), January 15, 2019, Page 10

http://www.nesus.eu/
https://www.tdx.cat/bitstream/handle/10803/405907/TJMF1de1.pdf?sequence=1&isAllowed=yi
https://www.tdx.cat/bitstream/handle/10803/405907/TJMF1de1.pdf?sequence=1&isAllowed=yi

CHAPTER 3. PLAN AND PROGRESS

3.2.3 Towards a model-agnostic CRDTs
In a radically different approach, we are currently working on an model-agnostic CRDT
which allows the understanding and construction of CRDTs as type abstractions regard-
less of a particular implementation model, e.g., the op-based and state-based variants in
the previous sections. Indeed, CRDTs in these models are closely linked to the type of
communication layer used for their implementation. For example, state-based CRDTs
are defined in such a way that arbitrary and ad-hoc communication between actors is
made possible, while operation-based CRDTs assume exactly-once causal delivery of
messages between actors. This leads to CRDTs which have the same semantics being
defined in multiple ways.

In this work in progress, with more details explained in Chapter 5, we show that
CRDTs can be defined in a communication-agnostic way using a limited number of prim-
itives. The primitives are chosen in such a way that they abstract over common patterns
in the semantics of CRDTs, and we aim to choose only primitives that can be compiled
to efficient implementations. That is, the definitions should be mechanically translatable
to an optimal implementation in an existing model. We identified four common patterns
and defined four primitives which we will use to describe nine common CRDTs. Further
details are explained in Chapter 5. We are exploring this approach to understand of it can
help inter-operability between state and op-based CRDTs. We plan to continue exploring
this topic in the future with the help of WP4.

3.3 Further Progress on CRDT Models
In this section, we continue the discussion on CRDT models focusing on the technical
details and evaluation of Pure op-based CRDTs and delta-based CRDTs. This extends
the research reported in deliverable D3.1.

3.3.1 Pure Operation-based CRDTs at the edge
In deliverable D3.1, we introduced our results on Pure op-based CRDTs. Since then, we
have proceeded to revise and improve the content in the associated journal submission
after receiving feedback from the reviewers.

For pure op-based CRDTs the state is organized as a partially ordered log of opera-
tions (POLog). In systems that do not require a full history of changes, it is important
to compact this POLog in a way that preserves the results of queries while reducing the
stored state. In our initial design, reported in D3.1, we had two mechanisms for com-
paction. The first compared operations that were causally delivered to a destination node
with the operations already in its local POLog and removed potential redundancy. The
second builds on the notion of causal stability that allows each destination site to iden-
tify when all operations that can be concurrent to a given operation in the POLog have
already been delivered there, allowing further compaction.

In the revision of the paper we have identified that a third case of compaction can
be provided by checking at the source if a new operation is redundant with respect to
the operations in the source POLog. In this case the operation is not even transmitted
to destinations and is effectively pruned at the source. To justify this improvement we
have designed a new, non trivial, CRDT that benefits from detecting redundancy at the

LightKone D3.2(v2.0), January 15, 2019, Page 11

CHAPTER 3. PLAN AND PROGRESS

source. It provides a “maximum of values written under an evolving limit”, having two
update operations: [wr,v] (write value) and [lim,v] (set limit), and a query operation rd
(read value). It assumes that values are totally ordered (e.g., integers), and the rd query
returns the maximum of the set of values that were “accepted” under the limit at the time
they were written. To decide if a value written is accepted, and given the possibility of
concurrent limit setting operations, the limit is updated as a multi-value register which
returns the maximum of its values when queried.

3.3.2 State-based CRDTs at the edge
In the previous deliverable, D3.1, we identified two sources of inefficiency in current
synchronization algorithms for delta-based CRDTs, and proposed two optimizations:
avoid back-propagation of delta-groups (BP) and remove redundant state in received
delta-groups (RR). We also introduced the concept of join-decomposition of state-based
CRDTs, essential for the RR optimization. We have been working to find sufficient con-
ditions for the existence these decompositions, showing how they can be obtained (proofs
are skipped), and present an evaluation of the optimizations proposed.

(a) Existence of Unique Irredundant Decompositions

Proposition 1 In a distributive latticeL satisfying the descending chain condition (DCC),
every element x ∈ L has a unique irredundant join decomposition.

Proposition 2 If L is a finite distributive lattice, then the irredundant join decomposition
of x ∈ L is given by the maximals of the join-irreducibles below x.

Most CRDT designs define the lattice state starting from booleans, natural numbers,
unordered sets, and obtain more complex states by lattice composition through: cartesian
product ×, lexicographic product �, linear sum ⊕, finite functions ↪→ from a set to a lat-
tice, powersets P , and sets of maximal elementsM (in a partial order). Typical CRDT
designs simply consider building join-semilattices from join-semilattices, never examin-
ing whether the result is more than a join-semilattice. In fact, all these constructs yield
lattices satisfying DCC, when starting from lattices satisfying DCC (such as booleans
and naturals). Also, it is easily seen that most yield distributive lattices when applied to
distributive lattices, with the exception of the lexicographic product with an arbitrary first
component. Fortunately, the typical use of lexicographic products to design CRDTs is
with a chain (total order) as the first component, to allow an actor which is “owner” of
part of the state (the single-writer principle) to either inflate the second component, or to
change it to some arbitrary value, while increasing a “version number” (first component).
In such typical usages of the lexicographic product, with a chain as first component,
the distributivity of the second component is propagated to the resulting construct. Ta-
ble 3.3.1 summarizes these remarks about how almost always these CRDT composition
techniques yield lattices satisfying DCC and distributive lattices, and thus, have unique
irredundant decompositions, by Proposition 1.

Having DCC and distributivity, even if it always occurs in practice, is not enough
to directly apply Proposition 2, as it holds for finite lattices. However if the sublattice
given by the ideal ↓x = {y | y v x} is finite, then we can apply that proposition to this
finite lattice (for which x is now the top element) to compute the decomposition. Again,

LightKone D3.2(v2.0), January 15, 2019, Page 12

CHAPTER 3. PLAN AND PROGRESS

L
A×B A�B C�A A⊕B U ↪→ A P(U) M(P)

A,B,P has DCC⇒L has DCC 3 3 3 3 3 3 3

A,B distributive⇒L distributive 3 7 3 3 3 3 3

Table 3.3.1: Composition techniques that yield lattices satisfying DCC and distributive
lattices, given lattices A and B, chain C, partial order P and (unordered) set U .

L
A×B A�B C�A A⊕B U ↪→ A P(U) M(P)

∀x ∈ L· x/⊥ finite 3 7 7 7 3 3 3

∀〈x,y〉 ∈ L · 〈x,y〉/〈x,⊥〉 finite – 3 3 3 – – –

Table 3.3.2: Composition techniques that yield finite ideals or quotients, given lattices A
and B, chain C, partial order P, all satisfying DCC, and (unordered) set U .

finiteness yields from all constructs, with the exception of the lexicographic product and
linear sum. For these two constructs, a similar reasoning can be applied, but focusing
on a quotient sublattice in order to achieve finiteness (Given elements a v b ∈ L, the
quotient sublattice b/a is given by b/a = {x ∈ L | a v x v b}). Table 3.3.2 summarizes
these remarks; the second row applies only to lexicographic products and linear sums.

(b) Evaluation

In this evaluation we compare classic delta-based synchronization against state-based,
and show the benefits of employing BP and RR optimizations. The evaluation takes place
in a Kubernetes cluster with 16 Quad Core Intel Xeon 2.4 GHz, deployed in Emulab. We
have designed a set of of micro-benchmarks, with update operations on three distinct data
types (grow-only set, grow-only counter, and grow-only map). The topologies employed
are a partial-mesh with 16 nodes, each node with 4 neighbors; and a tree with 14 nodes,
each node with 3 neighbors, with the exception of leaf nodes. With this evaluation, we
conclude that:

• in terms of transmission:

– in all configurations, classic delta-based represents almost no improvement,
when compared to state-based;

– in the tree topology, BP is enough to attain the best result, since the underlying
topology does not have cycles;

– with a partial-mesh, BP has little effect, and RR contributes most to the overall
improvement.

• in terms of memory:

– the size of delta-groups being propagated, not only affects the network band-
width consumption, but also the memory required to store them in the buffer

LightKone D3.2(v2.0), January 15, 2019, Page 13

CHAPTER 3. PLAN AND PROGRESS

for further propagation; with the proposed optimizations, we improve previ-
ous approaches by up-to 270% less memory, in some cases having almost no
overhead when comparing to the optimal case (state-based).

• in terms of processing time:

– since our solution with the optimizations proposed sends less (redundant) in-
formation, it has consistently lower processing overhead than classic delta-
based synchronization;

– if most of the CRDT state is updated between synchronization rounds, the
processing overhead is higher for our solution when compared with both delta
and state-based alternatives: this is explained by the fact that RR tries to re-
move redundant state when there is almost none (we note however that this is
an extreme workload that we do not expect it to be a common case).

3.4 Communication Abstractions for Edge Computing

As it has been discussed in the previous section, data abstractions are often designed as-
suming some set of guarantees from the underlying communication layer. In this section,
we present the design of communication layers by addressing two main aspects. The
first is how to provide causal delivery, which is the base for providing causal consistency,
the strongest consistency model that allows for available (non-blocking) applications [6].
In particular, we discuss the end-to-end causal delivery and pitfalls that can arise in dis-
tributed edge applications and we present a corresponding solutions. The second aspect
we address is the design and implementation of the communication layers, by present-
ing the progress in the work previously introduced in deliverable D3.1. In particular, we
present technical details on implementing causal delivery and stability in causal middle-
wares. It shows how to implement causal delivery and stability in op-based models that
are likely to be used in heavy edge. We then present and empirical evaluation to Parti-
san communication library that implements protocols for message dissemination through
hybrid gossip and group membership, known for their efficiency and resilience. These
works are extensions to those presented in deliverable D3.1.

3.4.1 End-to-End Causal Delivery
Traditional causal delivery middlewares [10] provides a delivery order in each process
that is consistent with causality, i.e., delivering messages at each process in some order
which does not contradict causality. However, it does not provide client applications with
knowledge about concurrency under the partial order of causality. Given two messages
m1 and m2 delivered in sequence to some process, no information is provided to the
application whether m1 causally preceded m2 or if they were originated independently of
each other.

Providing such knowledge to the application is a mandatory feature for several classes
of applications that require knowledge of concurrency in order to apply arbitration rules [14].
An example is an application that given two concurrent bids will arbitrate to consider
only the higher bid. Since current implementations of causal delivery middleware lack

LightKone D3.2(v2.0), January 15, 2019, Page 14

CHAPTER 3. PLAN AND PROGRESS

this feature, they are only suitable for a more limited class of applications where this
knowledge is not needed, and thus cannot be used as a general abstraction.

We focused since the last deliverable on making a case for a Tagged Causal Delivery
(TCD) middleware, which delivers messages together with causality tags (e.g. logical
clocks) that characterize the end-to-end happens-before relation, defined according to
client-visible events in the client process order, and ignoring purely internal middleware
events (such as receiving a message and queuing it for later deliver).

This work on TCD was reflected in our implementation of the TCSB middleware and
also is under submission in a paper that explains the aforementioned problem, the pitfalls
in trying to achieve this end-to-end causal delivery using traditional middleware and pre-
senting TCD as a solution. Next, we summarize those pitfalls and the TCD middleware
as a solution.

(a) The pitfalls of exposing middleware timestamps

At first glance, it might seem trivial to implement tagged causal delivery, by using any
classical causal delivery middleware service and exposing to the client code the times-
tamps (e.g., vector-clocks) that are used internally to ensure causal delivery. However,
when considering concrete implementations, some unexpected problems arose. We show
how naively exposing the timestamps would lead to an incorrect characterization of
causality, in either of the two typical interaction models between middleware and client
code: callback-based and with independent threads/processes.

(a).1 Callback-based In an event-driven architecture with a single process, the ap-
plication code runs as callbacks invoked from the middleware code when messages need
to be delivered to the application logic to be processed, e.g., deliver(m, t) for message
m tagged by t timestamp. To avoid reentrancy problems, when a send is invoked in-
side the deliver callback, the send simply adds the message to a queue, to be handled by
middleware code when the callback finishes. It can happen that the middleware has a
set of messages ready to be delivered, and invokes the deliver callback for each one, be-
fore handling sends which have been enqueued. If the middleware creates timestamps for
messages to be sent only upon dequeuing them, then a message will be tagged as causally
in the future of all messages that were delivered after the send action by client code and
before dequeuing occurred. This means that some messages that are actually concurrent
are tagged as causally related, making timestamps reflect a larger relation than happens-
before, over-ordering some events. While this does not break causal delivery, it means
that these timestamps cannot be exposed as precisely characterizing happens-before.

(a).2 Independent threads/processes/actors In other architectures we have two in-
dependent processes, a client process and a middleware process. Here, in addition to the
queue of messages to be sent, as above, we will typically also have a queue of messages
ready to be delivered. The middleware tags and enqueues messages to the deliver queue,
while the client dequeues and processes them. When doing a send, the client enqueues
a message to the send queue. This message will be tagged by the middleware process as
in the future of other messages not yet delivered by the client (namely, those that are still
in the delivery queue but have already been tagged), when they are in fact concurrent.
Note that what defines the happens-before is the total order of send and deliver events

LightKone D3.2(v2.0), January 15, 2019, Page 15

CHAPTER 3. PLAN AND PROGRESS

as observed by each client process; other events, e.g., when a message was enqueued
or dequeued by the middleware process, are irrelevant (i.e., events which happen in the
system, but invisible to the API).

(b) Correct tagging of happens-before

To correctly characterize happens-before, a message being sent must be tagged reflecting
the causal knowledge according to all delivery events at the client, up to the send event
(at the client).

In the single process callback-based model, this can be achieved by making the mid-
dleware update the causal timestamp (e.g., vector-clock) just before invoking each deliver
callback, and either making the send function tag the message before enqueuing, or mak-
ing the middleware process all messages enqueued to be sent before invoking the next
deliver callback.

As for the two independent processes model, the client process will need to maintain
the causal timestamp, update it at each deliver event and use it to tag each message. The
middleware process keeps a causal timestamp as before and uses it for the causal delivery
order. The only difference is that now messages are tagged at the client process and not
at the middleware process.

(c) A welcome side-effect

In classical causal delivery middleware, some concurrent messages are tagged as in
happens-before relation to each other. This unnecessary over ordering, while not con-
tradicting causal delivery, has the adverse effect of inducing extra delays on delivery,
making some message wait for another when it should be possible to deliver it earlier. In
tagged causal delivery middleware, which characterizes happens-before in a precise way,
as we discussed above, each message will be able to be delivered as early as semantically
possible.

3.4.2 Progress on Communication Layer Abstractions

We now present two contributions at the communication layer addressing different set-
tings. The first shows how to implement causal delivery and stability in op-based models
that are likely to be used in heavy edge. The second one presents the evaluation of Par-
tisan library and protocol. These works are extensions to those presented in deliverable
D3.1.

(a) Implementing Causal Delivery and Stability

In the previous deliverable, i.e., D3.1, we introduced TCSB (Tagged Causal Stable Broad-
cast) middleware that is a main component of pure operation-based CRDTs. We ex-
plained causal delivery and other concepts such as PO-Log (Partially-Ordered Log), se-
quential data type and causal stability. We discussed how causal stability would lead to
a more compact state by discarding existing causality information that can be safely be
removed once “stable”.

LightKone D3.2(v2.0), January 15, 2019, Page 16

CHAPTER 3. PLAN AND PROGRESS

Our previous implementation consisted of using vector clocks as timestamps to track
causality in the middleware and achieve causal order delivery of operations. Also re-
garding the causal stability mechanism, it was achieved using what we called a Recent
Timestamp Matrix (RTM), a local data structure at each node i, where each entry consists
of the last known (delivered) operation vector clock form every node j. Using that matrix,
we could calculate a stable vector s as the component-wise minimum. Every operation
with a vector clock v is stable iff v≤ s.

In order to move towards the edge and support a larger number of nodes, reducing
the size of vector clocks was crucial (as their size grows linearly with the number of
nodes). We were working since the last deliverable on using dependency dots, that are
more compact and efficient than vector clocks.

The main idea behind the use of dependency dots is that vector clocks contain a lot
of causality information that is not needed to track causality between operations. Instead
of sending a vector clock with N entries where each represents the changes seen from
each process p, we need to only send Q ≤ N entries of the processes that changed since
the last broadcast. This solution provides more compact timestamp that grows linearly
with the number nodes Q≤ N from which operations where delivered since the last local
broadcast. Moreover, as each process eventually delivers all operations, we can compact
even more. We applied transitive reduction on the previous compact timestamp, which
allowed reducing the previous number of changes using causality between the delivered
operations. As a result to that, we have new more compact timestamps that we call
dependency dots which only requires sending entries for concurrent operations delivered
since the last broadcast.

The idea is not completely new as there exist works that use some compressed ver-
sions of vector clocks. However, this led to different changes in the middleware, stability
mechanism as well as allowed us to support dynamic membership instead of being lim-
ited to static membership. For instance, the use of dependency dots led to changes in the
delivery mechanism of operations. We expect that this would make delivery faster and
we plan on showing that in future experiments.

(b) Partisan

Partisan is a distributed communication library that provides an alternative communica-
tion layer for Erlang and Elixir. Partisan has a simple membership API and rich support
for backend modules for different network topologies: static, full mesh, client-server,
peer-to-peer, and publish-subscribe through implementing hybrid gossip protocols like
HyParView and Plumtree [31]. This allows for a robust and easy to use communication
layer for edge applications, especially in hostile networks and dynamic memberships.
For this reasosn, Partisan is being used as the backbone of Lasp edge runtime. These
interesting features are also demonstrated by the rapid adoption in the industry. In fact,
Partisan is currently being used as part of product development by four industry adopters
that we know of: Leapsight Bondy, and three more that do not wish to be mentioned by
name in this public report.4

In a nutshell, Partisan is a distributed programming model and distribution layer for
Erlang that is meant to be used as an alternative to Distributed Erlang. Partisan intro-
duces two important improvements over Distributed Erlang: (1) the addition of multiple

4We will mention them during the review.

LightKone D3.2(v2.0), January 15, 2019, Page 17

CHAPTER 3. PLAN AND PROGRESS

runtime-selectable cluster topologies, and (2) the ability to gain additional parallelism
by distributing messages over multiple communication channels. Applications that are
developed using the Partisan programming model can specify the cluster topology at
runtime which allows applications to choose the most efficient topology at hand without
having to modify application code.

Partisan was previously introduced in D3.1 at the end of the first year as ongoing
work, and that deliverable explains its functionality and its programming model. Since
that time, we have continued to work on Partisan through adding new features and pro-
viding empirical evaluations summarized as follows.

• the design of the Partisan programming model that supports the runtime specifica-
tion of multiple cluster topologies;

• the design of the channel-based full mesh backend that enables greater parallelism
than possible in Distributed Erlang; and

• a detailed evaluation of Partisan demonstrating increased parallelism through the
use of multiple communication channels and increased scalability by specializing
the topology to the application at runtime. By leveraging communication channels,
we demonstrate up to a 30x improvement on point-to-point messaging, as well as
an 13.5x improvement on the distributed database application. By enabling appli-
cation developers to specify the topology at runtime, we demonstrate the ability to
scale the lightweight key-value store application from a cluster of 256 nodes to a
cluster of 1024 nodes.

3.5 Towards Partial Replication at the Edge
After presenting some CRDT models and data abstractions that are useful at different
edge system models (light, heavy, and hybrid), we now address the data availability
and scalability challenge at the edge, by providing a partial replication approach that
is needed for applications that exhibit large data sets and desire high availability. The
research focuses on providing causal consistency, being a useful consistency model for
many modern (edge) applications. In particular, we continued the work started in D3.1
on Saturn service for partial replication, and disussed the need for edge-tailored features.
In this section, we mention the progress made in this direction, a new Saturn variant
called Gesto. On the other hand, we extend the work on Saturn to allow for concurrent
operations using relaxed consistency inside datacenter or microdatacentrs at the heavy
edge.

3.5.1 From Saturn to Gesto: towards partial replication at the edge
While the above approach addresses causal delivery as an integrated part of data abstrac-
tions, an alternative is to decouple data propagation from causality information that can
be maintained through a separate metadata service. Saturn is a metadata service that can
be added to any partially replicated data store to provide causal consistency. Saturn was
previously introduced in D3.1 at the end of the first year as ongoing work, and details on
its architecture and operation are given in that document. Since that time, the Saturn work

LightKone D3.2(v2.0), January 15, 2019, Page 18

CHAPTER 3. PLAN AND PROGRESS

has matured and led to a Ph.D. thesis by Manuel Bravo, which was defended publicly on
July 2, 2018.

Nevertheless, Manuel Bravo’s Ph.D. thesis does not address the problems listed in
D3.1, falling short as a solution to provide causal consistency for edge networks. Gesto
is a novel architecture that aims at tackling these novel challenges, departing for the
lessons learnt from Saturn. We summarize the main results in this section5.

Gesto is a hierarchical architecture that aims at extending—requiring minimal changes—
causally consistent cloud storage services with mechanisms to operate in the edge, bring-
ing cloud services closer to clients. Gesto proposes a two-level architecture, where the
top level is compose by a handful set of datacenters and the bottom level is composed
by possibly hundreds of edge replicas. Each edge replica has a local datacenter to which
they are connected, namely their parent datacenter. A datacenter, together with its chil-
dren edge replicas is called region. By having this two-level hierarchy, Gesto is able to
still use the default mechanism of the causally consistent, could storage service that it is
extending to operate among datacenters; and its custom, optimise mechanisms to operate
within a region.

Gesto relies on constant size timestamps to track causality (the size of these times-
tamps does not grow with the number of edge replicas). As Saturn demonstrated, this is
key to ensure scalability with the number of replicas. The design of Gesto assumes that
migration within a region may be relatively frequent and quite rare across regions. Thus,
it is optimise to exhibit low intra-region migration. Gesto uses a multipart timestamp and
a novel protocol which permits it to significantly lower the intra-region migration latency
at the cost of slightly increasing the size of the metadata. Furthermore, Gesto can be
reconfigured online with a low overhead. It includes protocols to reconfigure the system
in order to (i) change the replication set of a data item, (ii) add (or removing gracefully)
an edge replica, (iii) cope with edge replica’s failures.

We have built a prototype that implements these techniques. Our prototype, built us-
ing the Erlang/OTP programming language, extends a version of Saturn. We evaluate
Gesto in Grid5000 using realistic benchmarks. We have compared it to four state-of-
the-art solutions that make different trade-offs: COPS[33], Saturn[12] and two variants
of Occult[35]. Results show that Gesto is the only solution capable of offering high
throughput, fast update replication, scalability, and fast client intra-region migration si-
multaneously.

3.5.2 Practical Causal Consistency for Geo-replicated Stores
Context and Motivations

Saturn and Gesto both provide a meta-data service [12] that decouples the propaga-
tion of metadata, to track causality between operations, from the propagation of update
operations between data centers. They introduce an inspiring way to maintain partially
replicated systems via the meta-data service. In this section, we present C3, a solution
that builds on the proposed approach by improving the concurrency level. To avoid rep-
etitions, we discuss C3 as a self-contained solution, explictly mentioning the differences
to Saturn’s partial replication when it is convenient. We also discuss the directions being
pursued for extending our proposals to the edge.

5For more information, please see the master thesis of Nuno Afonso available here:
http://www.gsd.inesc-id.pt/ ler/reports/nunoafonsomsc.pdf.

LightKone D3.2(v2.0), January 15, 2019, Page 19

CHAPTER 3. PLAN AND PROGRESS

C3 is designed to extend an existing storage system by integrating our replication
scheme to enforce causal+ consistency. Thus, our design assumes that the underlying
storage system provides the following properties: partial geo-replication with eventual
consistency across data centers; within a data center, after a write completes, all following
reads must return the written value; data is sharded inside a data center.

Our design separates the system in two layers: the causality layer and the datastore
layer. Clients interact with the datastore layer for executing client operations. The datas-
tore layer is responsible for executing operations in the local data center, and propagating
them to remote data centers. The datastore layer coordinates with the causality layer to
decide when an operation can be executed in order to enforce causal consistency. The
causality layer is responsible for propagating causality tracking information among oper-
ations. In our system, this information consists of labels – for each write operation, our
system generates a label consisting of a unique identifier and the causal dependencies for
the operation. The causal dependencies are a vector with one entry per data center.

Each data center contains a causality layer instance which is responsible for managing
the causality information inside a data center and exchange causality-related information
– labels – with other causality layer instances. Each causality layer instance communi-
cates directly with every other causality layer instance. This approach differs from Sat-
urn, where causality information was propagated through a single tree interconnecting all
causality layers instances.

Our system design handles three types of operations: (i) read operations, to read
the state of the database; (ii) write operations, to modify the state of the database; and
(iii) migrate operation, to change the home data center of a client.

Enforcing causality The goal of the causality layer is to maintain the necessary in-
formation to guarantee that any operation execution respects causal consistency. As we
assume that in general there are more read operations than write operations, our design
favors the execution of read operations. Thus, we want to allow read operations to pro-
ceed without any coordination, executing directly in the datastore.

Under our system model, common to systems that use quorum-based replication,
while a write is in progress, the value returned by a read might be either the old or the
new value. For enforcing causal consistency we need to guarantee that: (i) for a write,
w(o), after a client returns a version that reflect w(o) it cannot later read an older version
that still not reflects the write; (ii) for two writes of the same or different objects, w1(o1)
and w2(o2), where w1 causally precedes w2, if a client reads a version of object o2 that
reflects w2, all following reads of o1 must return a version that reflects w1.

The first property could be enforced immediately by a system providing one-copy
serializability (or linearizability). However, our system model assumes a weaker model,
common in quorum-based replicated systems. This property can be enforced in the client
layer by caching the values returned by read operations. For systems that use quorum-
based replication, the same property can be enforced by always contacting the same
quorum of nodes when reading a given object.

For enforcing the second property, we adopt the following strategy: first, we record
information about the dependencies of each operation; second, we guarantee that opera-
tions that may depend on each other cannot execute concurrently.

We rely on the causality layer to implement this strategy. To this end, the causality
layer maintains: an operation counter, used to timestamp operations; an executed clock,

LightKone D3.2(v2.0), January 15, 2019, Page 20

CHAPTER 3. PLAN AND PROGRESS

a vector with one entry per data center recording the timestamp of the latest operation
executed from that data center; an executing clock, a vector recording the timestamp of
the latest operation from each data center in execution in the local data center.

When the application issues a write, the client sends the operation to the datastore,
which forwards the information to the causality layer and propagates the operation itself
to the nodes that are responsible for executing the write. However, the operation is not
immediately executed in any node.

When the causality layer receives the information about a new local operation, includ-
ing a unique identifier and the set of data centers where the operation is to be delivered to,
it increments the local operation counter, uses it to assign a timestamp to the operation,
and sets the operation dependencies to be those of the executing clock – this information
is the operation label. We note that this is necessary in our system model, as for oper-
ations that are being currently executed, it is not possible to determine if the client has
read the old or new value of the objects. Thus, the only safe approach is to assume that
the write depends on all writes that are in progress.

The causality layer puts the label of the new operation in a log of pending operations
to execute and propagates it to the causality layers in relevant data centers (i.e., data
centers that replicate the modified object). When a causality layer receives a label from
a remote data center, it adds it to the log of pending operations. A pending operation is
ready to execute when the operations it depends upon have already completed, i.e., all
entries of the executed clock are larger or equal to the entries in the dependencies of the
operation.

When an operation is ready to execute, the causality layer notifies the local nodes
responsible for executing the operation that they can execute the operation; these nodes
acknowledge the causality layer when the execution completes. In conjunction with our
mechanism to record the causal dependencies of an operation, this approach guarantees
that an operation only executes after all operations it depends upon have completed.

Migrate When reading or writing an object that is not replicated in the local data center
it is necessary to guarantee that the system still enforces causal consistency. Intuitively,
what is necessary is to guarantee that the operation of accessing the remote replica ex-
ecutes after all operations that have been observed by the client. As the client does not
record any information about the operations it must depend on, this information needs
to be obtained from the causality layer. Again, the only safe approach is to assume that
the client might have observed a version of the database that reflects all operations under
execution.

As in Saturn, we implement a migrate operation that allows a client to move to a
different home data center. This operation executes similarly to a write operation, with
the difference that it is only propagated to the target (new home) data center, and that
when the operation is ready to execute in the target data center, the client is notified
that the migration has completed. After the migration completes, a client can send its
operations directly to the new home data center.

Discussion Our approach tracks a safe approximation of causal dependencies, while
still allowing a high degree of concurrency as we discuss in this section.

When compared with solutions that track causal dependencies precisely, such as
COPS [33], our approach has the advantage of requiring no additional information to

LightKone D3.2(v2.0), January 15, 2019, Page 21

CHAPTER 3. PLAN AND PROGRESS

be stored in the storage system. To track dependencies precisely, these systems require,
at least, a version identifier to be recorded with every object version.

When compared with systems that also include a causality layer to control the execu-
tion of operations, such as Saturn [12] and Eunomia [26], our system relies on a weaker
consistency model inside a data center, allows increased concurrency, requires no addi-
tional information to be stored with each object and does not require the client to manage
any information about dependencies.

Both Saturn and Eunomia assume that each storage system implements linearizability
inside a data center. Although linearizability can be implemented efficiently, current data
storage systems that use quorum-based replication often adopt a weaker model – e.g.
Cassandra and Riak with any quorum specification and MongoDB with majority read
concern6.

Additionally, our approach allows increased concurrency when compared with Sat-
urn. In this system, as writes executed concurrently in a data center by multiple clients
are serialized, all information about the fact that they are concurrent is lost. Thus, when
executing these operations in remote data centers, they need to execute serially, i.e., an
operation from a data center can only start executing after the previous operation from
the same data center completes. On the contrary, in our system, as writes includes their
dependencies, they can execute concurrently. We note that the trade-off is that, in our
system, a write can only execute in a data center after the completion of the writes that
are being executed when the write starts. However, if multiple writes are issued concur-
rently, they all have to wait for the completion of the writes being executed, but then they
can all execute concurrently.

In deliverable D6.1 we discuss how we have integrated our proposal in an existing
storage system and present some performance results. More information about this work
is presented in the publication under submission list in the end of this report.

Providing Causal Consistency at the Edge For providing causal consistency in par-
tially replicated settings, Saturn and C3 decouple the propagation of causality information
from the propagation of updates. For the proposed approaches to work, a key property is
to be able to know that no operation that an operation depends on is missing. In general,
this is challenging in partially replicated settings, as operations are only propagated to
nodes that replicate the information they modify. In Saturn, this problem is solved by
using a tree to disseminate information about operations – by the properties of dissemi-
nation in the tree, it is known that when the information for an operation reach a node, all
dependent operations also had reached the node. In C3 (and in Cure [2]), servers collect
information that no other operation is missing with a given origin.

We are currently exploring combining the C3 in the core of the network, with a Saturn-
like style of propagating causality information for nodes located at the edge of the net-
work, including mobile and sensor nodes. We expect to report a complete protocol in the
next deliverable.

6MongoDB supports linearizability, but it is more expensive than majority.

LightKone D3.2(v2.0), January 15, 2019, Page 22

CHAPTER 3. PLAN AND PROGRESS

3.6 List of Software and Prototypes
In this section, we present the software deliverables, libraries, and components in which
the contributions presented in this report appear. Most of these software have been
started in D3.1 and are direct artefacts that show in the LightKone Reference Archi-
tecture (LiRA), or used as backend components and libraries. Since this work package
is meant to provide the support to build generic edge computing runtimes, we believe
that developing fine-grained components is crucial to increase the impact of LightKone’s
work on external edge computing platforms. Indeed, although LiRA perfectly fits the
set of LightKone use-cases, the latter represents a sample edge computing set of appli-
cations, and thus addressing more use-cases may require building other edge computing
runtimes. To this end, the components provided in this deliverable can be used in building
new edge runtimes or integrated in existing ones to leverage the technology LightKone
provides.

• AntidoteDB: is a geo-replicated CRDT data store offering transactional causal con-
sistency and fits nicely the heavy edge. It is publicly available under Apache 2.0
license. Available at https://github.com/SyncFree/antidote.

• Lasp: a framework that allows to design and execute scalable synchronization-
free applications that resort to CRDTs as their data model. Available at https:
//github.com/lasp-lang/lasp.

• Antidote CRDT library: an Erlang library of operation-based CRDTs comprising
counters, flags, maps, sets, integer, registers and sequence (RGA). The library can
be used in any system, and is currently used in Antidote. Available at https://
github.com/SyncFree/antidote crdt.

• Yggdrasil: a framework and and runtime to build wireless edge applications. The
library includes a set of aggregation protocols a prototype of a control protocol
that simplifies the use of Yggdrasil as a benchmark platform. Available in https:
//github.com/LightKone/Yggdrasil-devel.

• Partisan: a TCP-based membership system written in Erlang/Elixir and imple-
ments the HyParView[31], hybrid partial view membership protocol, with TCP-
based failure detection. Partisan is suitable for dynamic topologies being robust
and lightweight. Available at https://github.com/lasp-lang/partisan.

• Efficient CRDTs library: a library of state-based, delta-based, delta-composition,
and pure-op-based CRDTs written in Erlang. The library includes implementations
of grow-only counter, positive-negative counter, lexicographic counter, bounded-
counter, grow-only set, two-phase set, add-wins and remove-wins set, enable-wins
and disable-wins flag, last-writer-wins and multi-value registers, and an add-wins
map. Available at https://github.com/lasp-lang/types.

• TCSB middleware: a vector-based middleware that implements the TCSB (Tagged
Causal Stable Broadcast) protocol, written in Erlang. The implementation sup-
ports efficient causal delivery and causal stability. Available at https://github.com/
gyounes/trcb base.

LightKone D3.2(v2.0), January 15, 2019, Page 23

https://github.com/SyncFree/antidote
https://github.com/lasp-lang/lasp
https://github.com/lasp-lang/lasp
https://github.com/SyncFree/antidote_crdt
https://github.com/SyncFree/antidote_crdt
https://github.com/LightKone/Yggdrasil-devel
https://github.com/LightKone/Yggdrasil-devel
https://github.com/lasp-lang/partisan
https://github.com/lasp-lang/types
https://github.com/gyounes/trcb_base
https://github.com/gyounes/trcb_base

CHAPTER 3. PLAN AND PROGRESS

3.7 Advancing state of the art
All the works appeared in thesis report are continuation of those started in D3.1. There-
fore, the state of the art (SOTA) review in D3.1 also holds here. Consequently, we avoid
repetition (and refer the reader to report D3.1), and we thus only summarize the delta
increment over D3.1. For the convenience of the reader, we summarize the main contri-
butions during these six months in Table 3.7.1. Considering the overall plan presented in
Chapter 3, we estimate the current progress regarding the final milestone to be between
50% and 60%.

Table 3.7.1: Summary of LightKone WP3 Contribution for the first six months of Year 2.

Component Description Previous SOTA Contribution Software Reference
State CRDT State-based data man-

agement for relaxed
consistency at the
edge

Efficient state syn-
chronization using
join-decomposition

state synchronization em-
pirical evaluation

Legion,
Lasp

Cha 4. Sec.
3.3

Op CRDT Operation-based data
management for re-
laxed consistency at
the edge

Generic framework;
optimized datatypes;
support resets; many
datatypes

Compression at the source None. Cha 4. Sec.
3.3

C3 and Gesto Improved Partial
replication (sharding)
meta-data handling
with causality support

Saturn Improved concurrency on
the server or heavy edge
cluster, and edge-tailored
low intra-region migration
latency

None Cha 4. Sec.
3.5

Causal Deliv-
ery and sta-
bility middle-
ware

middleware for causal
consistent systems
and op-based CRDTs

reduced meta-data
in causal delivery;
causal stability con-
cept;causality issues
in callback-based
and independent
threads/processes.

End-to-End Causal Deliv-
ery; Correct tagging; Im-
plementing Causal Delivery
and Stability

TCSB Cha 4. Sec.
3.4

Distributed
Communica-
tion

Edge-tailored alterna-
tives distribution layer
for Erlang.

Partisan: Hybrid
gossip-based with
different net topologies
and various clusters.

Partisan channel-based full
mesh back-end; evaluation
(# of nodes scalability)

Lasp,
LaspOn-
Grisp

Cha 4. Sec.
3.4

We continued the work on improving the efficiency of CRDT models. We extended
the Pure operations based CRDTs with a technique to do deduplication before sending
the updates. This improves on SOTA pure op-based [7] by avoiding the overhead of
sending redundant meta data, which is desired at the edge. The work is prepared as an
extension to journal publication to be submitted soon. On the other hand, the work started
on efficient delta CRDTs transfer using join decomposition has been continued [22]. In
particular, we introduced sufficient conditions for the existence these decompositions,
showing how they can be obtained, and presented an evaluation of the optimizations pro-
posed. Our evaluation showed a substantial improvement in transmission overhead for
delta CRDTs over classical state-based and other benefits regarding memory and com-
putation. In addition, we have started exploring the potential of model-agnostic CRDTs.
Our preliminary work shows that it is possible to compose CRDTs from few simple ab-
stractions regarding of the model. This may help future work on interoperability of state
and op-based CRDTs, a possible scenario when different edge nodes share data of dif-
ferent model. Finally, we have published more works to improve the understanding of
CRDTs.

At the communication side, we conducted a study to understand the pitfalls of imple-
menting causal consistency and their impact on concurrent applications. This is inline
with the work started on developing efficient causal middleware. In particular, we have

LightKone D3.2(v2.0), January 15, 2019, Page 24

CHAPTER 3. PLAN AND PROGRESS

developed a novel technique to implement meta data logs of such middlewares. The
work based on tree-structure tagging helps greatly pruning a partial order log upon de-
livery. We are planning to continue this progress in the future. We have also made
progress on Partisan communication library to support multiple clusters and make use
of parallel channels in Distributed Erlang. The evaluation demonstrated increased par-
allelism through the use of multiple communication channels and increased scalability
by specializing the topology to the application at runtime. By leveraging communica-
tion channels, we demonstrated up to a 30x improvement on point-to-point messaging,
as well as an 13.5x improvement on the distributed database application. By enabling
appli- cation developers to specify the topology at runtime, we demonstrate the ability to
scale the lightweight key-value store application from a cluster of 256 nodes to a cluster
of 1024 nodes.

We have also made progress on partial replication. We have supported new features
to Saturn meta-data service and developed a variant called Gesto that is optimized for the
edge. Gesto optimize to exhibit low intra-region migration. It uses a multipart timestamp
and a novel protocol which permits it to significantly lower the intra-region migration
latency at the cost of slightly increasing the size of the metadata. Furthermore, Gesto
can be reconfigured online with a low overhead. It includes protocols to reconfigure the
system in order to (i) change the replication set of a data item, (ii) add (or removing
gracefully) an edge replica, (iii) cope with edge replica’s failures.

C3 is also another advancement over Saturn. It focuses on exploiting parallelism
inside a data center or heavy edge cluster. It is designed to extend an existing storage
system by integrating our replication scheme to enforce causal+ consistency. When com-
pared with solutions that track causal dependencies precisely, such as COPS [33], our
approach has the advantage of requiring no additional information to be stored in the
storage system. To track dependencies precisely, these systems require, at least, a ver-
sion identifier to be recorded with every object version. When compared with systems
that also include a causality layer to control the execution of operations, such as Saturn
[12] and Eunomia [26], our system relies on a weaker consistency model inside a data
center, allows increased concurrency, requires no additional information to be stored

LightKone D3.2(v2.0), January 15, 2019, Page 25

CHAPTER 3. PLAN AND PROGRESS

LightKone D3.2(v2.0), January 15, 2019, Page 26

Chapter 4

Threat Analysis for LightKone
Use-cases

In deliverable D3.1, we started to analyze the various use-cases (presented in deliverable
D2.1) from a security perspective. In this section, we give a more detailed threat analysis
given the use-cases formal specifications in D2.2.

The security analysis formalization consists in a high level threat model focused in
both, the system assets and software. The composite approach is justified by the unavail-
ability of detailed software specification in most use cases due to either their proprietary
nature or development stage. For both scenarios, a comprehensive threat model provides
early understanding of security requirements through an abstract representation rather
than the code itself, which allows addressing security along the system design and com-
ponent selection.

The threat modeling adopted in this report is composed of three steps:

System decomposition provides a clear understanding about its entities, applications
and interconnections, which reveals their trust boundaries and attack surfaces. For
each use case, the decomposition stage has provided a Data Flow Diagram (DFD)
that supports the threat identification stage;

Threat identification consists in identifying and categorizing threats for every element
of the system described in the previous stage. The methodology used classifies
threats the systems are exposed to in six classes: (i) Spoofing; (ii) Data tampering;
(iii) Repudiation; (iv) Information disclosure; (v) Denial-of-Service - DoS; and (vi)
Elevation of privilege;

Countermeasures and mitigation for threats in elements with sufficient information,
some approaches on how to address them either through off-the-shelf solutions or
academic research approaches are provided.

Along the next sections we provide a brief description of the use cases addressed
in LightKone’s scope followed by a system decomposition and the number of threats to
which their entities are exposed to. A detailed description encompassing all identified
threats, actors and strategies to cope with them are further presented in Appendix A.

27

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

4.1 UPC - Coordination between servers and data stor-
age for the Guifi.net monitoring system

The system described in Sections 1 and 2 of Chapter 3 of deliverable D2.1 is composed
of three main components. First, there are approximately 34,000 active nodes, such as
routers and switches, that collaboratively provide or consume diverse network services
(e.g. Internet connectivity). Their state and available resources need to be monitored for
the purpose of billing, capacity planning and service provision. This is done by the sec-
ond component of the system - the monitoring servers which consist in instances of the
SNPServices tool (approximately 200 active servers). They coordinate with each other
in order to distribute the workload of monitoring tasks and maintain a shared database
containing the results of monitoring. Finally, the main Guifi.net website and the cen-
tral database server aggregate and display data provided by the monitoring servers. The
database also maintains the list of nodes to be monitored which it shares with the moni-
toring servers.

Figure 4.1.1 presents a Data Flow Diagram (DFD) identifying all the elements into
the monitoring system, their trust boundaries and interconnections while Table 4.1.1 sum-
marizes the classes of threats to which each element in the monitoring system is exposed
to.

Central
DB

Guifi.net
website

SNPService

Monitoring server

SNPService

Monitoring server

Nodes list and monitoring reports

Guifi.net router Guifi.net router Guifi.net router

Monitoring data

Guifi.net premises

Users' premises

Coordination and data replication

Figure 4.1.1: DFD - Guifi.net monitoring system

Threat Centrad DB Guifi.net Monitoring server Network node

Spoofing - 2 1 1

Data tampering - - 4 2

Repudiation - - 1 2

Information Disclosure - 3 1 1

Denial-of-Service (DoS) - 1 2 -
Elevation of Privilege - - 1 1

Table 4.1.1: Number of threats identified per element.

LightKone D3.2(v2.0), January 15, 2019, Page 28

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

General security requirements
This section presents a set of general security requirements derived from the security
analysis of UPC’s monitoring system.

• The system must ensure that each network node is monitored by at least three
independent monitoring servers for cross-checking. If any persistent divergence in
the reported data is detected the corresponding server must be flagged and reported;

• The communication channels among entities belonging to the monitoring system
or its related messages must be encrypted;

• The system must protect the integrity of the monitoring database. All operations
must be logged and authenticated. The monitoring servers can only write or modify
the database entries for the nodes they were assigned to. Any modification of
monitoring data for other nodes must be forbidden;

• The status data reported by the network node must be checked for correctness,
integrity and authenticity before being added to the database. The monitoring soft-
ware running on the node must be protected and verified for each report;

• The monitoring tasks distribution must not only be fair and efficient but also abuse-
resistant. No monitoring server must be responsible for the majority of nodes;

• The system must be resistant to network partitions and database corruption. The
collected data should be persistent and remain available when any of the monitor-
ing servers fails or disconnects.
These aspects can be directly assessed through core developments into this project,
particularly, the hybrid gossip communication protocol in WP5 will provide re-
siliency to network partitions and node faults, while the efforts in WP6 together
with AntidoteDB will enhance the Central DB corruption resistance.

4.1.1 Scality - Pre-indexing at the edge
The system described in Section 1 of Chapter 4 of deliverable D2.1 consists in Zenko
Multi-Cloud Controller, an open-source project that provides a unifying storage inter-
face and advanced search capabilities (by indexing the data) in multi-cloud backend data
storage systems, including Amazon S3, Microsoft Azure and Google Cloud Platform.

Figure 4.1.2 presents the main components in this system, which comprises Client-
applications that write data to the storage system and retrieve the search results; precom-
puting nodes at the edge (i.e., Zenko) that aggregate client requests and forward data to
higher levels of the system; and backend storage systems where the client data are stored
(i.e. Clouds). The precomputing nodes also perform various computations on client
data including encryption, hash signature generation, indexing and index lookups. More-
over, some customers have legacy applications (i.e., external applications), that directly
communicate with the cloud systems and are not yet connected to Zenko. Table 4.1.2
presents the number of threats identified for each entity in this system according to the
classification previously discussed.

LightKone D3.2(v2.0), January 15, 2019, Page 29

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

Client-Applications

Zenko

Cloud A Cloud B

External
application

Direct access

Generic object storage
and query

Cloud-specific object
storage and query

Figure 4.1.2: DFD - Pre-indexing at the edge

Threat Client-Applications Zenko Cloud External application

Spoofing 2 1 - 1

Data tampering 2 3 1 3

Repudiation 1 1 - 1

Information Disclosure 2 4 2 2

Denial-of-Service (DoS) - 1 - -
Elevation of Privilege 1 1 - 1

Table 4.1.2: Number of threats identified per element.

General security requirements

• The system must provide defense mechanisms preventing access to unencrypted
data flows;

• All the parties involved in the system must be authenticated and authorized by the
user;

• The communication channels among entities belonging to the system or their re-
lated messages must be encrypted;

• The system must provide the ways for the user to verify the integrity of data at any
stage of processing.

An important functionality to be provided by Zenko solution is the ability to perform
data search in data previously encrypted at the edge during the index computation and
stored in cloud services (see D2.2). In this sense, the work on searchable encryption
(i.e., BISEN) being developed under Lightkone’s scope has the potential to provide such
feature. BISEN is detailed in Section 5.3.

LightKone D3.2(v2.0), January 15, 2019, Page 30

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

S3 model and assumptions

• The S3 REST (for Amazon cloud services) access model consists of every indi-
vidual query having a verifiable signature based on a shared secret, which implies
some differences from the others supported cloud services:

– The secret must be in clear text on both ends, on the client and the server. It
can be encrypted with symmetrical keys, even so, the client still must have
the secret to transact. In this way, an attacker discovering such secret is an
important threat;

– Key/secret combinations can be time-based and are easily revoked, which can
limit threats;

– Very granular rights can allow access without allowing the modification of
rights;

– Every request is verified, so that stolen tokens are less useful;

– Man-in-the-middle attacks are very difficult since signatures are based on nu-
merous elements of a query.

• The storage of the secrets is a key point. The basic open source version has a simple
flat file for storage, so more sophisticated models are important for sensitive data;

• The public facing S3 endpoint interfaces represent a fairly limited attack surface,
even if a secret is stolen, only that specific users’ data would be compromised;

• The Identity and Access Management (IAM) API represents a more significant
threat as a stolen secret could permit tampering with rights for an entire enterprise;

• The complexity of the IAM security model is often recognized as a significant
source of errors, misconfigurations, and breaches as a consequence.

• In a private environment, a malicious or irresponsible administration can cause
breaches;

• In public clouds this attack vector exists but is difficult to measure, since these
environments are generally not forthcoming with there internal policies;

4.1.2 Stritzinger - No-Stop RFID
We now focus on the use case presented in Section 1 of Chapter 5 of deliverable D2.1
and described in Figure 4.1.3. This system is composed of the following components: the
RFID tags that are moving on the conveyor belt, the RFID readers that can read and write
the data to and from the RFID tags, and a distributed cache of RFID content featuring
completed and missing steps. The readers communicate with each other through Ethernet
network by flooding all the latest updates to keep the cache data consistent.

Despite the protected environment in which the No-Stop RFID system is deployed,
its elements face threats that could compromise the manufacturing process. The classes
of threats to each element is exposed to are presented in Table 4.1.3 and further discussed,
in Appendix A.

LightKone D3.2(v2.0), January 15, 2019, Page 31

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

RFID cache

RFID
reader/writer

RFID
reader/writer

RFID tag RFID tag

step status

cache update

Figure 4.1.3: DFD - No-Stop RFID

Threat RFID tag RFID reader/writer RFID cache

Spoofing 1 1 1

Data tampering 1 2 2

Repudiation 1 1 1

Information Disclosure 1 1 1

Denial-of-Service (DoS) - 1 1

Elevation of Privilege - - -

Table 4.1.3: Number of threats identified per element.

General security requirements

• The system must be able to protect the cache data from eavesdropping or manipu-
lating by unauthorized parties;

• The communication between the readers must be secured and resistant to DoS at-
tacks;

• The system must provide a way for the factory owners to verify the authenticity of
RFID tags and reader software and hardware;

• Any modifications to the cache data must be detected and flagged without affecting
the manufacturing process.

The main security requirements yielded by the No-Stop RFID threat model will ben-
efit from the work in WP5 (i.e., M19-M36) where we will extend the suit of distributed
protocols and mechanisms designed, implemented, and evaluated in the previous tasks
with security features, namely, data privacy, data integrity and strategies to tolerate DoS
attacks.

LightKone D3.2(v2.0), January 15, 2019, Page 32

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

4.1.3 Gluk - Self-sufficient precision agriculture management for ir-
rigation

The use case scenario described in Chapter 6 of deliverable D2.1 presents a sensor-based
platform for precision agriculture which allows for collecting, analyzing and reacting to
field sensor data in near real-time. It collects the readings from thousands of field sensor
nodes, aggregates these values at the edge gateway and matches the processed values
with the most suitable irrigation rule for the field state. Then, such irrigation pattern
is applied to the crops through actuators. Figure 4.1.4 shows all the main entities and
relations into this use case and Table 4.1.4 summarizes the classes of threats identified
for every element.

Gateway /
Basestation

Sensor Actuator

Sensed data Action

Figure 4.1.4: DFD - Agriculture sensing analytics

Table 4.1.4: Number of threats identified per element.

Threat Gateway Sensor Actuator

Spoofing 1 1 1

Data tampering 2 2 1

Repudiation - 1 1

Information Disclosure 2 1 1

Denial-of-Service (DoS) 1 2 2

Elevation of Privilege 3 - 1

General security requirements

• Every node in the network must be identified and checked for any software or
hardware modifications before being added to the network. All nodes failing this
check must remain isolated from the rest of the network;

• The gateways must be able to identify the sensor nodes abusing the wireless and
battery resources and have ways to isolate those from the rest of the network;

• The system must prevent any changes to the sensor readings and the actuators com-
mands at the time they are generated, transmitted and processed. Any manipulation
with the data along the way must be detected and reported;

LightKone D3.2(v2.0), January 15, 2019, Page 33

CHAPTER 4. THREAT ANALYSIS FOR LIGHTKONE USE-CASES

• The system must remain available even in the presence of connection failure of
several days or more;

• The data generated by the system must be only accessible to the authorized entities
(e.g. network nodes, applications, system administrators). The system must ensure
secure communication channels and storage;

• The system must be robust and fault tolerant. It must adapt to changes in the
wireless environment and withstand the DoS attacks. Each communication channel
must be replicated to ensure data availability and timely delivery;

• The sensor data must be verified for correctness before the action is taken upon it.
The system must detect the deviations in the sensor reading reported by the sensors
that are close to each other, cross-check the values and discard suspicious readings.
Any repeated, conflicting or inconsistent actuators commands must be detected and
discarded as well.

LightKone D3.2(v2.0), January 15, 2019, Page 34

Chapter 5

Exploratory Research

In this chapter, we present the research exploratory work that is related but not at the
core of LightKone. These works have the potential of more exploration or inspiration in
the future. Specifically, we present more details on the model-agnostic CRDT approach
mentioned in Section 3.2, and two security works on Efficient Boolean Searchable Sym-
metric Encryption and Securing Smart Hubs through N-Version Programming.

5.1 A model-agnostic CRDT definition language

In a radically different approach, we are currently working on an model-agnostic CRDT
definition language which allows the understanding and construction of CRDTs as type
abstractions regardless of a particular implementation model, e.g., the op-based and state-
based variants in the previous sections. Indeed, CRDTs in these models are closely
linked to the type of communication layer used for their implementation. For example,
state-based CRDTs are defined in such a way that arbitrary and ad-hoc communication
between actors is made possible, while operation-based CRDTs assume exactly-once
causal delivery of messages between actors. This leads to CRDTs which have the same
semantics being defined in multiple ways.

In work in progress, we show that CRDTs can be defined in a communication-
agnostic way using a limited number of primitives. The primitives are chosen in such
a way that they abstract over common patterns in the semantics of CRDTs, and we aim
to choose only primitives that can be compiled to efficient implementations. That is, the
definitions should be mechanically translatable to an optimal implementation in an ex-
isting model. We identified four common patterns and defined four primitives which we
will use to describe nine common CRDTs.

(a) Base assumptions

We assume that a CRDT is state shared amongst an arbitrary number of actors, and that
this state can be modified by operations. Actors gain knowledge of operations performed
by other actors, and derive from these known operations their local value of the state. In
an actual implementation of a CRDT knowledge of individual operations might only be
implicit: where possible a good implementation will summarize operations to conserve
space and bandwidth.

35

CHAPTER 5. EXPLORATORY RESEARCH

For defining CRDTs we only describe the semantics and list the operations per-
formable on the CRDT, as well as how the value derives from the known operations. An
actual implementation does not always require individually distinguishable operations,
but we assume in our descriptions that operations are uniquely identifiable.

(b) Patterns and primitives

We define the following primitives: aggregation of commutative and associative opera-
tions, reinterpretation of an existing CRDT’s operations and value to define a new one,
causing the forgetting the operations in the causal past of an actor by means of a clear
operation, and finally mapping of values to other CRDTs. While we do not provide a for-
mal semantics for these primitives, we do annotate the language with types. Each term
has a type (O,V), where O denotes the set of operations of the CRDT, and V denotes the
set of values the CRDT can assume.

Aggregation is the most basic primitive, defined on a set of values E, and a commutative
and associative binary operation ⊕. This is known in mathematics as a commuta-
tive semi-group. We write it as follows:

AGG〈E,⊕〉 : (E, {⊥}∪E)

The set of “operations” are the same as the values in E, and the value of the aggre-
gation is obtained by combining all known operations into one value using o. If no
operations are known, the value of the CRDT is ⊥. Aggregation is never used as
is, but is instead used in combination with reinterpretation to provide user-friendly
operations and a useful default value instead of ⊥.

Reinterpretation uses an existing CRDT C to produce a new CRDT C′, where the
operations of C′ are mapped to one or more operations of C using a function o, and
the value of C is mapped to the values of C′ using a function v.

INTERPRET〈C : (O′,V ′), o : O→ O′, v : V ′→V 〉 : (O,V)

Adding a clear operation to an existing CRDT, which causes the actors which gain
knowledge of it to forget the operations which were known by the actor who per-
formed the operation, at the time it was performed. CRDTs which have this oper-
ation implicitly clear when an operation is performed.

CLEAR〈C : (O,V)〉 : ({clear}∪O,V)

Mapping from keys to CRDT instances of a particular type partitions operations of
that type per key. The single operation on a map is apply(key,operation), and the
value of the map are key-value pairs, where the values are those of the type of the
embedded CRDT and are derived from all known operations per-key.

MAP〈K,C : (O,V)〉 : ({apply(k,o) : k ∈ K, o ∈ O},{(k,v) : k ∈ K,v ∈V})

LightKone D3.2(v2.0), January 15, 2019, Page 36

CHAPTER 5. EXPLORATORY RESEARCH

Name E ⊕ Operation Default
PNCOUNTER I + inc→ 1

dec→−1
0

GSET〈V〉 P(V) ∪ add(v)→{v} /0

EOFLAG B ∨ enable→ true
disable→ f alse

f alse

EDOFLAG B ∧ enable→ true
disable→ f alse

f alse

Table 5.1.1: The model-agnostic definitions of four CRDTs.

(c) Aggregate & Interpret

CRDTs which can be reduced to a set of values and a commutative and associative op-
eration on them can be constructed using the AGG and INTERPRET primitives. Where
INTERPRET is used to give the CRDT user-friendly operations and a default value other
than ⊥. For example, the positive-negative counter (PNCOUNTER) can be defined as
follows on the integral numbers and the addition operation:

PNCOUNTER : ({inc,dec},I) = INTERPRET〈AGG〈I,+〉,o,v〉

where o is a function mapping inc→ 1 and dec→−1, and v is a function mapping ⊥ to
0, or preserving the value of the aggregation otherwise.

That is, a PNCOUNTER is a CRDT with increment and decrement operations, and its
value is the total of all known increments and decrements, 0 if none are known.

In Table 5.1.1, we summarize the implementation of four CRDTs by listing the values
and operation of a semi-group, providing a translation of operations to the values, and
finally a default value for when there are no known operations. The grow-only set (SET)
of a set of values V is a CRDT with only an add(v) operation, and the value of the set
are all the known added values. We can define it using the semi-group consisting of
the powerset of V and the set union operation. The add(v) operation is translated to the
singleton set.

Finally, we define two flag data types which have not been described before, but will
be useful for defining other CRDTs. These are the enable-once flag (EOFLAG) and the
enable-disable-once flag (EDOFLAG). The enable-once flag reads false when no or only
disable operations are known, but once an enable is known the flag will always read
true from that point on. This can be reduced to the logical or operation on booleans, by
translating enable to true and disable to false.

Similarly, the enable-disable-once flag starts out false. When only enable operations
are known it reads true, but once a disable is known it will read false from that point
on. Like the enable-once flag this can be achieved by translating the flag operations
to boolean values, but to achieve the semantics our combining operation must now be
logical and.

LightKone D3.2(v2.0), January 15, 2019, Page 37

CHAPTER 5. EXPLORATORY RESEARCH

Base CLEAR〈Base〉 o v
GSET Multi-Value Register set(v)→{v}

clear→ clear
—

EOFLAG Enable-Wins Flag — —

EDOFLAG Disable-Wins Flag — —

Table 5.1.2: The model-agnostic definitions of three CRDTs with CLEAR.

(d) CRDTs with a clear operation

By applying the CLEAR primitive to three of the four previously defined data types we
can define three more CRDTs, in Table 5.1.2, which do conflict resolution on concurrent
operations. These are the multi-value register, the enable-wins flag, and the disable-wins
flag. Informally the conflict resolution process for CRDTs which clear can be described
from the point of view as an actor communicating to another as “I acknowledge all the
previous operations I have received, but I want my operation to win, unless you hear
about operations I did not know about; then combine those operations with mine.”

The multi-value register is a CRDT with a single set(v) operation which aims to
change the value of the register and with a value which is the set of concurrent register
changes. This is analogous to the grow-only set, whereby set operations are translated
to singleton sets, and also cause other actors to disregard the operations known by the
issuing actor. The enable-wins and disable-wins flags resolve concurrent conflicts by
letting either enable and disable operations win. Like the multi-value register which can
be derived from the grow-only set, the two flags can be derived from the enable-once
flag and enable-disable-once flag respectively, simply by implicitly causing operations
on the flags to disregard the operations known by the issuer when becoming known by
the recipient.

(e) Add-remove sets with conflict resolution

CRDT sets which aim to support a remove operation as well as an add need to resolve a
conflict which occurs when an element is concurrently added or removed. The two usual
variants are either add-wins or remove-wins conflict resolution.

An add-wins set can be seen as participants voting on the presence or absence of
an element in the set, with concurrent “presence” votes winning, while in the case of
remove-wins set the “absence” votes win. We can encode this intuition as a map from
set values to a flag CRDT, the latter denoting the votes of presence about the keys in the
former:

SET〈V,F : ({enable,disable},B) 〉 : ({add(v),remove(v) | v∈V},V)= WRAP〈MAP〈V,F〉,o,v〉

where the function o maps additions to the set to apply(v,enable) and removals to ap-
ply(v,disable), and the function v returns the set of keys of the wrapped map for which
the value is true. By using the EWFLAG or DWFLAG we can define both types of con-
flict resolution using existing CRDTs:

LightKone D3.2(v2.0), January 15, 2019, Page 38

CHAPTER 5. EXPLORATORY RESEARCH

Flag MAP〈V,Flag〉
ENABLE-WINS FLAG ADD-WINS SET

DISABLE-WINS FLAG DISABLE-WINS SET

5.2 Securing Smart Hubs through N-Version Program-
ming

The privacy threats of IoT applications processing sensitive IoT data are often over-
looked. The applications run at the remote cloud of a service provider and tend to request
more access permissions than they actually need to perform a given task. This fact, if left
unnoticed, may cause a severe damage to users’ privacy.

In order to address these privacy problems, several recent proposals suggested to
retain all sensitive IoT data at the edge under the control of the homeowner [21, 23].
Rather than depending on the cloud for all processing and storage needs, there is a locally
deployed edge hub that collects and aggregates data from sensor devices and provides a
platform for the execution of third-party IoT applications installed by the users. This
hub provides an API functions, so-called Trusted Functions (TF), for the applications to
access and process the sensitive IoT data according to the privacy policy of the user.

Trusted functions aim to implement high-level operations that mediate access be-
tween the application and the raw IoT data. In some cases a TF interposes between the
application and a data source, e.g., a camera device. The motivation for such a TF can
be, for instance, to provide a face recognition service over raw image data collected from
the camera without revealing the raw data to client home apps. TFs can also mediate
access to data sinks, for example to encrypt or anonymize sensitive data before sending it
to a remote server. Some home hub solutions support TFs at data sources [21], others at
data sinks [36], and others in both [23]. Once installed into the hub, trusted functions can
be invoked by local IoT apps running on the hub. TFs must be developed by third-parties
and installed by the hub administrator.

However, by definition, trusted functions must necessarily be safe to execute. As also
referred by Davies et al. [21], this requirement constitutes a significant drawback since
if a trusted function is malicious, it can easily compromise the security of the home hub
platform. Having a direct access to the sensitive IoT data, such function can cause a
privacy breach instead of preventing it. In this work, we aim to address this limitation
by presenting a solution to the design of an edge hub platform that can retain the original
flexibility and versatility of trusted functions without requiring full and exclusive trust on
the trusted function developers to ensure its correct behavior.

To overcome this challenge, we proposed a new solution based on N-version pro-
gramming (NVP) [27]. The key insight of our solution is that, rather than depending
on a single unreliable trusted function implementation, the idea is to depend on multiple
implementations (versions) of this function that run side by side and must agree on a
common result. Assuming that these versions were developed independently and cannot
collude, such approach ensures that a single malicious version cannot force an incorrect
outcome to be sent to the application thereby enhancing trust.

LightKone D3.2(v2.0), January 15, 2019, Page 39

CHAPTER 5. EXPLORATORY RESEARCH

Unit 2
Decision

Block

Unit 3

Unit 1

In
pu

t P
re

pr
oc

es
so

r

3-Version Units

Input
Arguments

Decision
Policy

Output
Results

Figure 5.2.1: N-version trusted function module (with N=3).

5.2.1 Edge Hub Architecture based on N-Version Trusted Functions

In this section, we present a general security architecture for edge hubs based on N-
version programming. In this architecture, edge hub extensions consist of N-version
trusted function modules (henceforth called “modules”). A module provides the func-
tionality of a single TF implemented internally in a N-version fashion, with each of the N
versions being provided by independent developers. Each of these versions, called units,
are required to implement the same trusted function specification.

Whenever an application issues a request, the input parameters are forwarded to all
N units and their outputs are compared with each other before a final output is returned
back to the application. Deciding whether or not a final output result is provided and
what that output result will be depends on a decision policy defined by configuration. In
a particular policy, all N units must produce the same result, which is then returned as
output result, otherwise the application is informed that no result was generated. Thus, if
any single unit implementation produces a malicious output, this output will differ from
the remaining N-1 units (assuming no collusion) causing the final result to be suppressed,
preventing the malicious unit from propagating its effects to the application.

Figure 5.2.1 shows the internals of a module implemented by 3 units. The input ar-
guments are passed by the client application and the output results are returned to the
application. The input preprocessor feeds the input arguments to each unit and the de-
cision block implements a decision algorithm according to the provided decision policy.
The decision policy is a configuration parameter decided by the hub administrator. Each
unit is implemented by a program that runs in an independent sandbox. The input pro-
cessor and the decision block logic must belong to the hub platform, which must also be
responsible for setting up the units’ sandboxes and the data paths represented by arrows
in Figure 5.2.1.

5.2.2 Detection of Unit Result Divergence

The decision taking process is at the core of what makes N-version programming ef-
fective at countering adversarial units. In the perfect scenario, each unit is assumed to
execute one of two possible versions: benign or adversarial. A version is benign if it

LightKone D3.2(v2.0), January 15, 2019, Page 40

CHAPTER 5. EXPLORATORY RESEARCH

consists of a flawless implementation of the module’s trusted function specification. A
version is adversarial if it deviates from the intended specification in order to tamper
with or leak sensitive data. Thus, if deviations exist between unit outputs, then at least
one adversarial version is present. Since different security properties can be attained de-
pending on the number of units in agreement, we define two decision policies providing
two agreement conditions:
Total agreement (TA) policy: This policy offers the strongest security guarantees. All
N units must agree on the same output result in order for an output to be returned. If
this condition holds, the resulting value is returned, otherwise an error is yielded. Thus,
1 benign version only is required to exist in order to suppress the return of a corrupted
result. In fact, for an attacker to be successful, all N versions must be both adversarial
and collude in producing the same output.
Quorum agreement (QA) policy: Only a quorum Q = bN/2c+1 units (i.e., a majority)
needs to reach consensus on a common return value. If Q is found, the module returns
the agreed upon value, otherwise it reports failure. The QA policy is weaker than the TA
policy because Q > 1 benign units need to be present to thwart an attack. Furthermore, a
successful attack requires Q < N colluding adversarial units.

5.2.3 Nondeterministic Inputs
One cause of unit divergence is operational and occurs whenever a specific trusted func-
tion depends on nondeterministic inputs, e.g., a random number, the system time or date,
etc. If different units obtain different readings for the same intended input value, units’
computations will likely return different results which may lead to failure in reaching a
total or quorum agreement conditions and harm module’s utility.

To avoid this problem, all nondeterministic inputs must be provided by the prepro-
cessor. Sandboxes must prevent units from issuing nondeterministic system calls. If
the version code depends on such calls, the input preprocessor can execute those upon
request and pass the same value to all units.

5.2.4 Main Findings
In spite of its conceptual simplicity, adopting NVP in the design of N-version trusted
function modules causes multiple side-effects in terms of the resulting utility, security,
and performance. Through an in-depth study of these side-effects, we learn that:

• For N-versions that implement the same algorithm and follow the algorithm spec-
ification, it is possible to provide an N-module offering high utility as long as the
software flaws in each version are residual,

• For N-versions that do not follow the same algorithm but still perform the same
task, we observe that although the module’s utility can be negatively affected by
the outputs divergence, it can be increased by using a custom agreement algorithm
specified according to the problem domain space, and

• The performance of an N-version trusted function module is typically bound by its
slowest version, a condition that can be relaxed considerably by taking advantage
of versions redundancy.

LightKone D3.2(v2.0), January 15, 2019, Page 41

CHAPTER 5. EXPLORATORY RESEARCH

The experiments results showed the effectiveness of different merging approaches for
the studied modules, as well as their negligible overhead compared to the worst of the
modules’ units. Additionally, the study features a relevant analysis on the impact of naive
and malicious implementations with respect to the utility, performance, and security of
the modules’ output results. In conclusion, we believe N-version programming to be a
valid approach in bootstrapping trust in data handling modules within an IoT environ-
ment.

5.2.5 Discussion
The NVP approach can be efficiently used at the edge for fault-tolerance and privacy
preservation. On one hand, the use cases that involve operations on critical infrastruc-
ture, e.g. electricity or natural gas grid, would benefit from the controller software that
is resilient to failures of certain NVP-based components. On the other hand, the third
party software components with access to such a critical infrastructure might abuse their
permissions and act maliciously, e.g. trigger unauthorized and potentially dangerous ac-
tions. The NVP-based system might account for such malicious activity and protect the
underlying infrastructure and its users.

Within LightKone scenario, we envision the NVP-based data processing modules
developed by independent developers/researchers/service providers, which act upon sen-
sitive sensor data. For instance, in case of smart agriculture scenario (as in Gluk’s use-
case), there is a high risk of performing the actions that might be harmful for crops (e.g.
over watering). This actions could be performed due to erroneous logic implementation,
or sabotaged by the competitors. Therefore the quorum-based NVP system might be a
good solution to prevent such actions from taking place. At the same time, the very same
NVP system can prevent extracting sensitive sensor data about the crops, by restricting
the module specifications and output format/data type.

5.3 BISEN: Efficient Boolean Searchable Symmetric En-
cryption

Cloud computing has had a profound impact on the way that we design and operate
systems and applications. In particular, data storage and archiving is now commonly
delegated to cloud infrastructures, both by companies and individual users. Companies
typically want to archive large volumes of data, such as e-mails or historical documents,
overcoming limitations or lowering costs of their on-premise infrastructures [5], while
individual users aim at making their documents easily accessible from multiple devices,
or simply avoid consuming storage capacity of their mobile devices [17].

However, data being outsourced to the cloud is often sensitive and should be pro-
tected both in terms of privacy and integrity. Private information incidents are constant
reminders of the growing importance of these issues: governmental agencies impose
increasing pressure on cloud companies to disclose users’ data and deploy backdoors
[18, 25]; cloud providers are responsible, maliciously or accidentally, for critical data
disclosures [16, 24]; and even external hackers have gained remote access to users data
for a limited time window [32]. Cloud outsourcing services are thus highly incentivized
to address these security requirements. In particular, when storing and updating large

LightKone D3.2(v2.0), January 15, 2019, Page 42

CHAPTER 5. EXPLORATORY RESEARCH

volumes of data in the cloud it is essential to offer efficient and precise mechanisms to
search and retrieve relevant data objects from the archive. This highlights the need for
cloud-based systems to balance security, efficiency, and query expressiveness.

To address this tension, Searchable Symmetric Encryption (SSE) [1] has emerged
as an important research topic in recent years, allowing one to efficiently search and
update an encrypted database within an untrusted cloud server with security guarantees.
Efficiency in SSE is achieved by building an encrypted index of the database and also
storing it in the cloud [20]. At search time, a cryptographic token specific to the query is
used to access the index, and the retrieved index entries are decrypted and processed. As
a much necessary communication complexity optimization, most SSE schemes delegate
these cryptographic computations to the cloud, as multiple index entries would otherwise
have to be downloaded to the client side. However, performing sensitive operations in the
cloud also leads to significant information leakage, including the leakage of document
identifiers matching a query, the repetition of queries, and the compromise of forward
and backward privacy [42] (respectively, if new update operations match contents with
previously issued queries, and if queries return previously deleted documents). These are
common, yet severe, flavors of information leakage that pave the way for strong attacks
on SSE, including devastating file-injection attacks [44].

Another relevant limitation in SSE schemes is query expressiveness, as most solutions
only provide single keyword match [15] or limited boolean queries (e.g. forcing queries
to be in Conjunctive Normal Form and not supporting negations) [28]. This hinders
system usability and may force users to perform multiple queries in order to retrieve
relevant results, which leads to extra communication steps and increased information
leakage.

5.3.1 Solution
In this work we address these limitations by presenting BISEN (Boolean Isolated Search-
able symmetric ENcryption), a new provably-secure boolean SSE scheme that improves
query expressiveness by supporting arbitrarily complex boolean queries with combina-
tions of conjunctions, disjunctions, and negations. This is a significant improvement
over the current state of art, since supporting boolean queries is fundamentally more
challenging than single-keyword queries and addressing negations is a non trivial task.
Furthermore, BISEN also boosts performance by minimizing the number of communi-
cation steps and data transference between clients and cloud servers. A central insight
in the design of BISEN is the fact that we can securely delegate critical computations
to the cloud by leveraging on a hybrid solution that combines standard symmetric-key
cryptographic primitives (e.g. Pseudo-Random Functions and Block-Ciphers [30]) with
remote attestation capabilities offered by modern trusted hardware, formally captured by
an abstraction called Isolated Execution Environments (IEEs) [9].

An IEE is an environment that allows applications to execute in isolation from all
external interference (including co-located software and even a potentially malicious Hy-
pervisor/OS) and that provides a mechanism for the remote attestation of computed out-
puts. Until recently, such an abstraction could only be built through hardware that was
infeasible to deploy in commodity cloud infrastructures [29], however recent advances
in trusted computing have made IEEs available in commodity hardware. Prominent ex-
amples include Intel SGX [19] and ARM TrustZone [4], which are being deployed in

LightKone D3.2(v2.0), January 15, 2019, Page 43

CHAPTER 5. EXPLORATORY RESEARCH

Client

Untrusted	
Resources

Trusted	
Resources

Isolated	
Execution	

Environment
(IEE)

(IEE.{Setup,Send,Receive})

IEE-Client	Crypto	
Secured	Channel

SSE	Crypto	
Secured	Channel

(IEE.{uInit,uPut,uGet})

Server

Cloud

Storage	
Service

Figure 5.3.1: Overview of the proposed approach.

current desktop and mobile processors and will soon become available as part of many
cloud infrastructures [40].

A main advantage of designing our system to leverage the IEE abstraction lies in its
portability, as our solution can be easily instantiated using different existing or future
IEE-enabling technologies as they become available in cloud platforms, while preserv-
ing security guarantees. This is also relevant when considering recent attacks on trusted
hardware [34] and subsequent patches [13]. To further increase this portability, we extend
the IEE formalization to support very lightweight hardware technologies (such as Intel
SGX, with its limit of 128MB EPC size), complemented with cryptographically pro-
tected accesses to more abundant untrusted resources in the machine hosting the IEE or
in other external cloud storage services. This extension allows us to minimize assump-
tions regarding the underlying technology employed in practice, while simultaneously
being able to efficiently and securely support very large databases.

This approach empowers BISEN (to the best of our knowledge) to be the first for-
ward and backward private boolean SSE scheme with minimal leakage, in the sense that
updates reveal no information and queries only reveal which encrypted index entries are
accessed, and verifiability against fully malicious adversaries, with reduced computation,
storage, and communication overheads.

5.3.2 Technical Overview

We now present a high level view of BISEN. Figure 5.3.1 provides an overview of our
approach, and the communication patterns between the central components of BISEN. In
BISEN, there are four main components: the client, the trusted hardware (IEE), the cloud
server, and a cloud storage service. The main idea in BISEN is to leverage IEEs as remote
trust anchors, responsible for performing secure computations over sensitive cloud-stored
data, which would otherwise require complex cryptographic mechanisms for performing
server-side computations. To achieve this goal, the cloud server will operate the IEE and
manage its communications with both the client and the cloud storage service, while the
storage service will act as an extended storage for the IEE (as the IEE can potentially be
lightweight, possessing small trusted storage capacity) and store BISEN’s main index.

LightKone D3.2(v2.0), January 15, 2019, Page 44

CHAPTER 5. EXPLORATORY RESEARCH

In this model, we consider both the server and storage service to be fully malicious, i.e.
they may attempt to break data privacy, integrity, or computation correctness. Denial of
service attacks are considered out of scope for this work.

The system model of BISEN is comprised of two main stages: bootstrapping and
operational. In the bootstrapping phase, the client establishes a secure communication
channel with the IEE (IEE-Client Crypto Secured Channel in Figure 5.3.1). This will
consist in executing a key exchange protocol, with the server acting as intermediary,
where the IEE uses hardware-specific cryptographic proofs that the code being run ex-
actly matches that of BISEN. After this stage, the client and IEE will use this secure
channel for communication, and the operational phase begins.

In the operational phase, the client can add/remove keywords to documents (i.e. up-
date the database), as well as search for documents matching a boolean expression with
multiple keywords. These functionalities are fulfilled by having the client interact with
the IEE, sending encrypted messages with the desired inputs. In response, the IEE pro-
cesses the clients’ requests and interacts with the storage service to store/retrieve index
entries (SSE Crypto Secured Channel in Figure 5.3.1), returning results to the client.
BISEN’s high efficiency lies in exploring the interplay between a lightweight client-side
structure, isolation of cryptographic keys and secure processing within server-side IEE,
and verifiable storage to a cloud storage service.

5.3.3 Discussion
The proposed approach can be used by client applications running in the edge of the
network and storing data in cloud infrastructures. Thus, it is suitable for applications
adopting a heavy edge model.

An interesting application scenario for BISEN is encrypted archival of email in the
cloud. In such a scenario, users would be able to securely outsource the storage and
management of their emails to a third-party cloud provider, while still being able to have
rich search features that are commonly found in todays unsecured email cloud archival
services. As studied by Zheng et al. [44], cloud email is an example scenario that can
be easily targeted by file-injection attacks, hence this application enforces the need to
improve the security of SSE schemes to withstand fully malicious adversaries. Further-
more, forward privacy is known to help mitigate such attacks [44], and backward privacy
may have important implications in future attacks as well [11]. Overall, minimizing in-
formation leakage should be a top priority when deploying SSE schemes in practical
scenarios.

Other scenarios where the proposed approach could be used is for IoT applications,
where client nodes collect and store data at cloud nodes. Using BISEN, this data can be
later searched without disclosing it, thus preserving privacy.

LightKone D3.2(v2.0), January 15, 2019, Page 45

CHAPTER 5. EXPLORATORY RESEARCH

LightKone D3.2(v2.0), January 15, 2019, Page 46

Chapter 6

Annotated Publications &
Dissemination

We present a list of the scientific papers and reports where the work towards D3.2 has
been presented:

• Nuno Preguiça, Carlos Baquero, Marc Shapiro. Conflict-free Replicated Data
Types (CRDTs). Springer. Chapter in Encyclopedia of Big Data Technologies.
2018. https://doi.org/10.1007/978-3-319-63962-8 185-1.

Abstract. A summary on state of the art of CRDTs.

• Ali Shoker, João Leitão, Peter Van Roy, and Albert van der Linde. Programming
Models and Runtimes: Towards General Purpose Computations at the Edge. The
IET. Book chapter in Ultrascale Computing Systems. Ino Press, 2018.

Abstract. A book chapter that explains the overall approach we follow in LightKone.

• Ali Shoker, Anna Queralt, and Toni Cortes. Data Management Techniques: Ad-
vanced Conflict-free Replicated DataTypes. The IET. Book chapter in Ultrascale
Computing Systems. In Press, 2018.

Abstract. This is another work the summarizes the recent advances of the four
CRDT models.

• Ali Shoker. Brief Announcement: Sustainable Blockchains through Proof of eX-
ercise. In PODC’18: ACM Symposium on Principles of Distributed Computing.
2018.

Abstract. This work is an exploration work given the rise of the blockchain area as
a hot topic that often overlaps with highly scalable and available systems, P2P, and
edge computing.

• Nuno Preguiça. Conflict-free Replicated Data Types: An Overview. Report for
Agregação degree.

Abstract. A habilitation report that discusses the innovations of CRDTs.

47

https://doi.org/10.1007/978-3-319-63962-8_185-1

CHAPTER 6. ANNOTATED PUBLICATIONS & DISSEMINATION

• João Leitão, Pedro Ákos Costa, Maria Cecı́lia Gomes, and Nuno M. Preguiça.
Towards enabling novel edge-enabled applications. CoRR, abs/1805.06989, 2018.

Abstract. This work dicusses the edge system models and spectrum.

• Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure Operation-Based
Replicated Data Types. arXiv CoRR. October, 2017. Submitted to IEEE TPDS.

Abstract. In this work, we extend state of the art pure op-based CRDTs to inlucde
compression at the source, to reduce the meta-data shipping overhead.

• Georges Younes, Paulo Almeida, Ali Shoker, Carlos Baquero. Tagged Causal De-
livery: End-to-End Happens-Before as a Middleware Service. Submitted to Mid-
dleware 2018.

Abstract. This work discusses the pitfalls of implementing causal middlewares
presented in this report.

• Vitor Enes, Paulo Sérgio Almeida, Carlos Baquero and João Leitão. Distributing
Lattices with Optimal Deltas and Join Decompositions. Submitted to DISC 2018.

Abstract. This work presents the advances on delta state CRDT synchronization
presented in this report.

• Christopher S. Meiklejohn and Heather Miller. Partisan: Enabling Cloud-Scale
Erlang Applications. Submitted to SoCC 2018.

Abstract. This submission includes the recent advances and evaluation of Partisan,
presented in this report.

6.1 Dissemination
• Carlos Baquero. CRDTs and Redis – From Sequential to Concurrent Executions.

Invited talk. Redis Conference 2018, April 24-26, 2018, San Francisco. CA.

• Carlos Baquero. Causality is Simple. Papers-we-Love Porto. March 22, 2018.

• Ali Shoker. As Secure as Possible Eventual Consistency. Invited talk. Protocol
Labs workshop. Lisbon, May 2018.

• Vitor Enes. Borrowing an Identity for a Distributed Counter. Invited talk. Protocol
Labs Research Meeting 2018.

• Nuno Afonso, Manuel Bravo, and Luı́s Rodrigues. Causality for the Cloudlets:
Offering Causality on the Edge With Small Metadata. Dagstuhl Seminar 18091,
Feb. 25 -– Mar. 2, 2018, Wadern, Germany.

• Peer Stritzinger and Adam Lindberg. 1000 nodes, large messages, we want it all!
Prototype with new OTP 21. Code BEAM STO, Stockholm, Sweden, May 31 -
June 1, 2018.

LightKone D3.2(v2.0), January 15, 2019, Page 48

Bibliography

[1] A Survey of Provably Secure Searchable Encryption. ACM Computing Surveys
(CSUR), 47(2):18:1—-18:51, 2015.

[2] D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa, N. Preguiça,
and M. Shapiro. Cure: Strong semantics meets high availability and low latency. In
Proceeding of the IEEE 36th International Conference on Distributed Computing
Systems, ICDCS’16, pages 405–414, Nara, Japan, 2016.

[3] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. Delta State Replicated Data
Types. J. Parallel Distrib. Comput., 111:162–173, 2018.

[4] Tiago Alves and Don Felton. TrustZone: Integrated hardware and software security.
ARM white paper, 3(4):18–24, 2004.

[5] Michael Armbrust, Armando Fox, Rean Griffith, Anthony D Joseph, Randy Katz,
Andy Konwinski, Gunho Lee, David Patterson, Ariel Rabkin, Ion Stoica, and Matei
Zaharia. A view of cloud computing. Communications of the ACM (CACM),
53(4):50–58, 2010.

[6] Hagit Attiya, Faith Ellen, and Adam Morrison. Limitations of highly-available
eventually-consistent data stores. IEEE Transactions on Parallel and Distributed
Systems, 28(1):141–155, 2017.

[7] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Making operation-based
crdts operation-based. In Distributed Applications and Interoperable Systems - 14th
IFIP WG 6.1 International Conference, DAIS 2014, Held as Part of the 9th Inter-
national Federated Conference on Distributed Computing Techniques, DisCoTec
2014, Berlin, Germany, June 3-5, 2014, Proceedings, pages 126–140, 2014.

[8] Carlos Baquero, Paulo Sérgio Almeida, and Ali Shoker. Pure operation-based repli-
cated data types. CoRR, abs/1710.04469, 2017.

[9] Manuel Barbosa, Bernardo Portela, Guillaume Scerri, and Bogdan Warinschi.
Foundations of hardware-based attested computation and application to SGX. In
Proceedings of the 1st IEEE European Symposium on Security and Privacy - EURO
S&P’16, pages 245–260, 2016.

[10] Kenneth Birman, Andre Schiper, and Pat Stephenson. Lightweight causal and
atomic group multicast. ACM Transactions on Computer Systems (TOCS),
9(3):272–314, 1991.

49

BIBLIOGRAPHY

[11] Raphael Bost, Brice Minaud, and Olga Ohrimenko. Forward and Backward Private
Searchable Encryption from Constrained Cryptographic Primitives. In CCS’17.
ACM, 2017.

[12] Manuel Bravo, Luı́s Rodrigues, and Peter Van Roy. Saturn: a distributed metadata
service for causal consistency. In Proceedings of the Twelfth European Conference
on Computer Systems, pages 111–126. ACM, 2017.

[13] Peter Bright. Intel releases new spectre microcode update for skylake; other
chips remain in beta. https://arstechnica.com/gadgets/2018/02/intel-releases-new-
spectre-microcode-update-for-skylake-other-chips-remain-in-beta/, February 2018.

[14] Sebastian Burckhardt. Principles of Eventual Consistency, volume 1 of Foundations
and Trends in Programming Languages. now publishers, October 2014.

[15] David Cash, Joseph Jaeger, Stanislaw Jarecki, Charanjit Jutla, Hugo Krawczyk,
M Rosu, and Michael Steiner. Dynamic searchable encryption in very-large
databases: Data structures and implementation. In Proceedings of the The 21th An-
nual Network and Distributed System Security Symposium -NDSS’14, volume 14,
2014.

[16] Adrian Chen. GCreep: Google Engineer Stalked Teens, Spied on Chats. Gawker.
http://gawker.com/5637234, 2010.

[17] ComScore. The 2017 U.S. Mobile App Report.
https://www.comscore.com/Insights/Presentations-and-Whitepapers/2017/The-
2017-US-Mobile-App-Report, 2017.

[18] Tim Cook. A Message to Our Customers. Apple. https://www.apple.com/customer-
letter/, 2016.

[19] Victor Costan and Srinivas Devadas. Intel sgx explained. Technical report, Cryptol-
ogy ePrint Archive, Report 2016/086, 2016. https://eprint.iacr.org/2016/086, 2016.

[20] Reza Curtmola, Juan Garay, Seny Kamara, and Rafail Ostrovsky. Searchable Sym-
metric Encryption: Improved Definitions and Efficient Constructions. In Proceed-
ings of the 13th ACM Conference on Computer and Communications Security -
CCS’06, pages 79–88, 2006.

[21] Nigel Davies, Nina Taft, Mahadev Satyanarayanan, Sarah Clinch, and Brandon
Amos. Privacy Mediators: Helping IoT Cross the Chasm. In Proc. of HotMobile,
2016.

[22] Vitor Enes. Efficient Synchronization of State-based CRDTs. Master’s thesis, Uni-
versidade do Minho, 2017.

[23] Earlence Fernandes, Justin Paupore, Amir Rahmati, Daniel Simionato, Mauro
Conti, and Atul Prakash. Flowfence: Practical data protection for emerging iot
application frameworks. In Proceedings of USENIX Security, 2016.

[24] Terry Frieden. VA will pay $20 million to settle lawsuit over stolen laptop’s data.
CNN. http://tinyurl.com/lg4os9m, 2009.

LightKone D3.2(v2.0), January 15, 2019, Page 50

BIBLIOGRAPHY

[25] Glenn Greenwald and Ewen MacAskill. NSA Prism program taps in to user data of
Apple, Google and others. The Guardian. http://tinyurl.com/oea3g8t, 2013.

[26] Chathuri Gunawardhana, Manuel Bravo, and Luı́s Rodrigues. Unobtrusive deferred
update stabilization for efficient geo-replication. In Proc. of USENIX ATC 17, pages
83–95, Santa Clara, CA, 2017. USENIX Association.

[27] Nuno Santos Igor Zavalyshyn, Nuno O. Duarte. An Extended Case Study about
Securing Smart Home Hubs through N-Version Programming. In Proceedings of
15th International Conference on Security and Cryptography (SECRYPT), 2018.

[28] Seny Kamara and Tarik Moataz. Boolean Searchable Symmetric Encryption with
Worst-Case Sub-Linear Complexity. In EUROCRYPT’17. IACR, 2017.

[29] Jonathan Katz. Universally composable multi-party computation using tamper-
proof hardware. In Eurocrypt, volume 7, pages 115–128. Springer, 2007.

[30] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptography. CRC
PRESS, 2007.

[31] João Leitão, José Pereira, and Luis Rodrigues. Hyparview: A membership protocol
for reliable gossip-based broadcast. In Proc. of DSN’07. IEEE, 2007.

[32] Dave Lewis. iCloud Data Breach: Hacking And Celebrity Photos. Forbes.
https://tinyurl.com/nohznmr, 2014.

[33] Wyatt Lloyd, Michael J. Freedman, Michael Kaminsky, and David G. Andersen.
Don’t settle for eventual: Scalable causal consistency for wide-area storage with
cops. In Proceedings of the 23rd ACM Symposium on Operating Systems Principles,
SOSP ’11, pages 401–416, Cascais, Portugal, 2011.

[34] LSDS Group, Imperial College London. Spectre attack against sgx enclave.
https://github.com/lsds/spectre-attack-sgx, 2018.

[35] Syed Akbar Mehdi, Cody Littley, Natacha Crooks, Lorenzo Alvisi, Nathan Bron-
son, and Wyatt Lloyd. I can’t believe it’s not causal! scalable causal consistency
with no slowdown cascades.

[36] Richard Mortier, Jianxin Zhao, Jon Crowcroft, Liang Wang, Qi Li, Hamed Haddadi,
Yousef Amar, Andy Crabtree, James A. Colley, Tom Lodge, Tosh Brown, Derek
McAuley, and Chris Greenhalgh. Personal Data Management with the Databox:
What’s Inside the Box? In Proc. WCAN CoNEXT, 2016.

[37] Nuno Preguiça, Joan Manuel Marques, Marc Shapiro, and Mihai Letia. A Commu-
tative Replicated Data Type for Cooperative Editing. In Proceedings of the 2009
29th IEEE International Conference on Distributed Computing Systems, ICDCS
’09, pages 395–403, Washington, DC, USA, 2009. IEEE Computer Society.

[38] Nuno Preguiça. Conflict-free replicated data types: An overview. Agregação degree
document, Universidade NOVA de Lisboa.

LightKone D3.2(v2.0), January 15, 2019, Page 51

BIBLIOGRAPHY

[39] Nuno Preguiça, Carlos Baquero, and Marc Shapiro. Conflict-free replicated data
types. To appear in Encyclopedia of Big Data Technologies.

[40] Mark Russinovich. Introducing Azure confidential computing.
https://azure.microsoft.com/en-us/blog/introducing-azure-confidential-computing/,
2017.

[41] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski. Conflict-
free replicated data types. In Proceedings of the 13th International Conference on
Stabilization, Safety, and Security of Distributed Systems, SSS’11, pages 386–400,
Berlin, Heidelberg, 2011. Springer-Verlag.

[42] Emil Stefanov, Charalampos Papamanthou, and Elaine Shi. Practical Dynamic
Searchable Encryption with Small Leakage. In Proceedings of the The 21th An-
nual Network and Distributed System Security Symposium -NDSS’14, 2014.

[43] Shanhe Yi, Cheng Li, and Qun Li. A survey of fog computing: Concepts, ap-
plications and issues. In Proceedings of the 2015 Workshop on Mobile Big Data,
Mobidata ’15, pages 37–42, New York, NY, USA, 2015. ACM.

[44] Yupeng Zhang, Jonathan Katz, and Charalampos Papamanthou. All Your Queries
Are Belong to Us: The Power of File-Injection Attacks on Searchable Encryption.
In Proceedings of the 25th USENIX Security Symposium - Security’16. USENIX
Association, 2016.

LightKone D3.2(v2.0), January 15, 2019, Page 52

Appendix A

Threat Model of LightKone use-cases

53

Security analysis

João Marco C. Silva

1 Introduction

The security analysis formalization consists in a high level threat model fo-
cused in both, the system assets and software. The composite approach is
justified by the unavailability of detailed software specification in most use
cases due to either their proprietary nature or development stage. For both
scenarios, a comprehensive threat model provides early understanding of se-
curity requirements through an abstract representation rather than the code
itself, which allows addressing security along the system design and compo-
nent selection.

The threat modelling adopted in this report is composed of three steps:

System decomposition provides a clear understanding about its entities,
applications and interconnections, which reveal their trust boundaries
and attack surfaces. For each use case, the decomposition stage has
provided a Data Flow Diagram (DFD) that supports the threat iden-
tification stage;

Threat identification consists in identifying and categorising threats for
every element of the system described in previous stage. The method-
ology used classifies threats the systems are exposed to in six classes:
(i) Spoofing; (ii) Data tampering; (iii) Repudiation; (iv) Information
disclosure; (v) Denial-of-Service - DoS; and (vi) Elevation of privilege;

Countermeasures and mitigation for threats in elements with sufficient
information, some approaches on how to address them either through
off-the-shelf solutions or academic research approaches are provided.

1

1.1 UPC - Coordination between servers and data stor-
age for the Guifi.net monitoring system

The system described in Sections 1 and 2 of Chapter 3 (i.e. Deliverable
2.1) is composed of three main components. First, there are approximately
34,000 active nodes, such as routers and switches, that collaboratively pro-
vide or consume diverse network services (e.g. Internet connectivity). Their
state and available resources need to be monitored for the purpose of billing,
capacity planning and service provision. This is done by the second com-
ponent of the system - the monitoring servers which consist in instances of
the SNPServices tool (approximately 200 active servers). They coordinate
with each other in order to distribute the workload of monitoring tasks and
maintain a shared database containing the results of monitoring. Finally, the
main Guifi.net website and the central database server aggregate and display
data provided by the monitoring servers. The database also maintains the
list of nodes to be monitored which it shares with the monitoring servers.

Figure 1 presents a Data Flow Diagram (DFD) identifying all the elements
into the monitoring system, their trust boundaries and interconnections. The
security analysis presented in Section 1.1.2 addresses the threats each element
is exposed to.

1.1.1 Trust model and assumptions

We assume the central website and database server administrators to be
trusted and not maliciously collude with the administrators of monitoring
servers. The list of nodes to be monitored provided by the central server is
assumed to be initially complete and containing accurate nodes description.

In addition, we assume that data provided by routers and switches be-
ing monitored through Simple Network Management Protocol (SNMP) are
trustworthy, however its administrator might be malicious.

1.1.2 Security analysis

This section discusses the per element security analysis encompassing their
threats, actors and strategies to cope with them. Table 1 summarises the
classes of threats to which each element in the monitoring system is exposed
to. As detailed, the system entity with the major range of identified threats
is also the one being addressed into the LightKone project scope, i.e., the

2

Central
DB

Guifi.net
website

SNPService

Monitoring server

SNPService

Monitoring server

Nodes list and monitoring reports

Guifi.net router Guifi.net router Guifi.net router

Monitoring data

Guifi.net premises

Users' premises

Coordination and data replication

Figure 1: DFD - Guifi.net monitoring system

monitoring servers (see Figure 1).

Table 1: Class of threats identified per element.
Threat Centrad DB Guifi.net Monitoring server Network node

Spoofing - 7 7 7

Data tampering - - 7 -
Repudiation - - 7 7

Information Disclosure - 7 7 7

Denial-of-Service (DoS) - 7 7 -
Elevation of Privilege - - 7 7

Guifi.net website

Although being considered a trusted entity, the attack surface revealed
by connecting the website with external entities with different privileges re-
duce the central service trust boundaries. The main threats identified in our

3

analysis include:

Spoofing

• A ”phishing attack” could steal credentials from system administrators
as current website1 does not offer secure connection. It is easily solved
by deploying the HTTP Secure (HTTPS) extension in order to pro-
vide authentication for the website, users’ privacy and integrity for the
exchanged data while in transit;

• An attacker can connect to the website resorting to a week authenti-
cation system or a stolen credential. It might be mitigated through
multi-factor authentication approaches.

Information disclosure

• Sensitive information regarding additional details about network nodes
(i.e., their roles in terms of network topology, performance or economic
interest) could be exposed if messages or channel are not encrypted;

• Although not receiving clear data about individual users and services
through reports from monitoring servers, the aggregated data can re-
veal sensitive information about them if messages or channel are no
encrypted.

• With the absence of authentication for the endpoints in the network
connection, an attacker can act as a ”man in the middle” and eaves-
drops the entire communication, including monitoring data or admin-
istrators’ credentials.

Denial-of-Service (DoS)

• As a central service, an attacker can make the guifi.net website unstable
or unavailable through a Distributed Denial-of-Service (DDoS) attack.
Defining a DDoS response planning which includes mitigation services
or distributing the website workload across the network is usually effi-
cient and straightforward.

1http://guifi.net/

4

Monitoring server

As a consequence of the crowd-funded nature of guifi.net infrastructure,
monitoring servers are deployed in users’ premises. It increases their attack
surfaces, therefore making them the main target asset in such system. The
main threats we identified in such element are:

Spoofing

• A malicious user could set up a fake monitoring server that would not
actually monitor nodes, or that would do it inaccurately. This might
be addressed resorting to strong authentication, mainly with public-
key based certificates, which also encompasses other threats further
described;

Data tampering

• An attacker could tamper with data collected from network nodes and
locally stored. As it is deployed in users’ premises, this is further
stressed without integrity protection for the local database and/or week
Access Control Lists (ACLs);

• Monitoring servers’ administrators might modify the monitoring data
especially for the nodes they control. This could be done for the purpose
of improving their nodes statistics and/or lowering the statistics of
other nodes in the network;

• Assigning two monitoring servers to each network node, as suggested
in D2.1, is not enough in order to guarantee integrity of collected data.
Collusion attacks or a Byzantine server are examples in which this
approach fails;

• Replicating the local measurements with other monitoring servers in-
creases the system resilience and availability, however it raises some
different threats, such as data tampering or omission. As measurement
data is only consumed by the central database, it might be encrypted
with the DB public key before being transmitted to other serves. The
computational burden of such validation can also be transferred to the

5

network edge, namely, the monitoring servers. This is, indeed, an on-
going research led by the security team in LightKone and potentially
extensible to all use cases and to be integrated into the runtime system.

Repudiation

• One of the main concerns in the security aspects of guifi.net monitoring
system is the total absence of auditing logs and rolling back offending
updates mechanisms. This might be coped by deploying one off-the-
shelf solution from several currently available.

Information disclosure

• The same threats previously identified for data transmission, i.e., de-
tails about network nodes, traffic patterns and disclosure of sensitive
information are applied to data stored locally. Here, there are diverse
vector attacks, such as, bad or no ACLs, weak authentication, malicious
local administrators, etc. Although frenquently running in low power
devices, i.e., Single-Board-Computers (SBCs), an encompassing solu-
tion for such large attack surface might be to resort to cross-platform
software and/or hardware sandboxing in order to ensure contained op-
erations in third-parties and heterogeneous entities. This is another
solution extensible to the majority of use cases with current research
under development into the Lightkone scope;

Denial-of-Service (DoS)

• An attacker can make a server unusable or unavailable through the local
network, mainly for the instances of SNPSevices running on Single-
Board Computers (SBCs);

• Every monitoring server probing all 34,000 network nodes (in auto-
matic assignment mechanism) could make the network unstable or even
unavailable. Passive measurement approaches are usually applied to
avoid intrusive traffic from probing systems. In addition, considering
that normally checking a node’s status takes some time, such technique
may potentially leave benign monitoring servers out of work.

Elevation of privilege

6

• In such distributed architecture, with local administrators, an attacker
could elevate its privilege in order to compromise a server by deploying
any of the attacks previously identified for this element.

Network nodes

As discussed in Section 1.1.1 routers and switches are considered trusted
entities. However, the monitored nodes also include others monitoring servers
and different devices running diverse services, such as firewalls, proxies, web
services, etc. Hence, a deeper analysis has surfaced following threats for this
general entity (i.e., network nodes).

Spoofing

• A malicious user could set up a fake network node that would not
provide the actual status of the intended node. It might be done com-
bining IP spoofing and poor security mechanisms in the most deployed
versions of the SNMP (i.e., version 2). A strategy for this consists in
resorting to SNMPv3 or encrypted transport layer protocols.

Data tampering

• Local administrators might tamper with the nodes settings and report
fabricated information. By doing so, they might appear providing a
better service and thus attract more user traffic. It might be coped
by using mutual authentication mechanisms. Additionally, they could
abuse the monitoring tasks pool by assigning themselves to new tasks
as they appear and immediately reporting fake data;

• An attacker could intercept and tamper with values collected from net-
work nodes that usually use plain SNMP messages and an unencrypted
link with the monitoring server. As the monitoring results traverse the
general guifi.net infrastructure, such threat can be materialized through
a ”man in the middle” attack;

Repudiation

• As previously discussed, this system lacks an auditing mechanism,
hence an attacker could use a common shared key to authenticate as
different principals, confusing the information in nodes’ logs.

7

Information disclosure

• An attacker could seek aggregate information between network nodes
and monitoring server with unencrypted messages or communication
channel.

Elevation of privilege

• An attacker could elevate link priority by changing its class of service
in routers using community credentials.

1.1.3 General security requirements

This section presents a set of general security requirements derived from the
security analysis of UPC’s monitoring system.

• The system must ensure that each network node is monitored by at
least three independent monitoring servers for cross-checking. If any
persistent divergence in the reported data is detected the corresponding
server must be flagged and reported;

• The communication channels among entities belonging to the monitor-
ing system or its related messages must be encrypted;

• The system must protect the integrity of the monitoring database. All
operations must be logged and authenticated. The monitoring servers
can only write or modify the database entries for the nodes they were
assigned to. Any modification of monitoring data for other nodes must
be forbidden;

• The status data reported by the network node must be checked for cor-
rectness, integrity and authenticity before being added to the database.
The monitoring software running on the node must be protected and
verified for each report;

• The monitoring tasks distribution must not only be fair and efficient
but also abuse-resistant. No monitoring server must be responsible for
the majority of nodes;

• The system must be resistant to network partitions and database cor-
ruption. The collected data should be persistent and remain available
when any of the monitoring servers fails or disconnects.

8

1.2 Scality - Pre-indexing at the edge

The system described in Section 1 of Chapter 4 (i.e, Deliverable 2.1) consists
in Zenko Multi-Cloud Controller, an open-source project that provides a
unifying storage interface and advanced search capabilities (by indexing the
data) in multi-cloud backend data storage systems, including Amazon S3,
Microsoft Azure and Google Cloud Platform.

Figure 2 presents the main components in this system, which comprises
Client-applications that write data to the storage system and retrieve the
search results; precomputing nodes at the edge (i.e., Zenko) that aggregate
client requests and forward data to higher levels of the system; and backend
storage systems where the client data are stored (i.e. Clouds). The pre-
computing nodes also perform various computations on client data including
encryption, hash signature generation, indexing and index lookups. More-
over, some customers have legacy applications (i.e., external applications),
that directly communicate with the cloud systems and are not yet connected
to Zenko.

Client-Applications

Zenko

Cloud A Cloud B

External
application

Direct access

Generic object storage
and query

Cloud-specific object
storage and query

Figure 2: DFD - Pre-indexing at the edge

9

1.2.1 Trust model and assumptions

We assume that the edge precomputing service provider does not maliciously
collude with the application developer or cloud storage provider. We also as-
sume that the software and hardware platform where the client applications
are executed to be secure, however application developers and local adminis-
trators could try to exfiltrate or temper with sensitive user data, as detailed
in Section 1.2.2. We do not address attacks on user data performed by any
malicious applications running on the same platform that are not involved
in the described use case scenario.

1.2.2 Security analysis

Although the presented use case is mainly focused in the edge node (i.e.,
Zenko), we present threats identified for all elements which might impact
the security aspects of the whole system. Table 2 summarises the classes of
threats to which the system entities are exposed to.

Table 2: Class of threats identified per element.
Threat Client-Applications Zenko Cloud External application

Spoofing 7 7 - 7

Data tampering 7 7 7 7

Repudiation 7 7 - 7

Information Disclosure 7 7 7 7

Denial-of-Service (DoS) - 7 - -
Elevation of Privilege 7 7 - 7

Client-applications

As previously discussed, we generically assume that software and hard-
ware platforms where the client applications are executed to be secure, how-
ever, some identified threats might impact the whole system. Therefore, we
discuss them for the sake of the analysis completeness.

Spoofing

10

• An attacker could confuse a client by setting a fake edge node through
IP spoofing and a phishing process in the known transport layer port.
It might be coped with mutual authentication and/or encrypted com-
munication;

• An attacker could steal credentials stored in Client-application and
reuse them to access sensitive data. Resorting to strong authentication
mechanisms should solve this threat.

Data tampering

• Malicious application developers could try to tamper with sensitive user
data. Having direct access to the unencrypted data, such an adversary
could modify;

• An attacker could intercept and tampering with data being transmitted
between client-applications and edge node with unencrypted messages
or communication channel.

Repudiation

• Malicious application developers could compromise the log system.

Information disclosure

• An external attacker can intercept and eavesdrop on the communica-
tion between the client-applications and the edge computing node with
unencrypted messages of communication channel;

• Malicious application developers could try to exfiltrate sensitive user
data. Having direct access to the unencrypted data, such an adversary
might leak it to unauthorised parties.

Elevation of privilege

• A local administrator can elevate some user privilege locally giving
access to sensitive user data in the system.

Edge node - Zenko

Spoofing

11

• An attacker could use authentication tokens locally stored to access
cloud systems;

Data tampering

• Malicious application developers could try to tamper with sensitive user
data. Having direct access to the unencrypted data, such an adversary
could modify it according to his needs;

• In case of pre-encryption indexing, the edge node maintainer and ser-
vice provider could perform the same attack;

• Edge node maintainer can also abuse its cloud storage access rights and
manipulate the data without the user consent.

Repudiation

• An attacker could use a shared key to authenticate as different entities,
confusing the information in the logs;

Information disclosure

• Malicious application developers could try to exfiltrate sensitive user
data. Having direct access to the unencrypted data, such an adversary
might leak it to unauthorised parties;

• In case of pre-encryption indexing, the edge node maintainer and ser-
vice provider could perform the same attack;

• An attacker could access sensitive user information through a search
indexer;

• An attacker could access authentication tokens stored locally for ac-
cessing cloud storage backends.

Denial-of-Service (DoS)

• Malicious applications could perform DoS attacks preventing the appli-
cation and potentially other service providers to operate as intended;

Elevation of privilege

12

• An application developer can provide a pointer across a trust boundary,
rather than data which can be validated.

Cloud systems

Data tampering

• Cloud storage providers can have unlimited and untraceable access to
the user data stored at their premises.

Information disclosure

• The user data can be analyzed for user profiling or shared with third
parties;

• An attacker can act as a ”man in the middle” with end points of a
network connection with no authentication or encrypted messages;

External applications

Although outside of Scality control, some threats identified in legacy ap-
plication (i.e., without Zenko integration) might compromise the whole sys-
tem. Most of them are the same observed for the Client-applications inte-
grated with Zenko.

Spoofing

• An attacker could steal credentials stored locally and reuse them to
access sensitive data.

Data tampering

• Malicious application developers could try to tamper with sensitive
user data. Having direct access to the unencrypted data and with no
validation through Zenko, such an adversary could modify it;

• Poor local ACLs could allow external applications tamper with data
already stored in cloud systems;

13

• An attacker could intercept and tampering with data being transmit-
ted between external application and cloud systems with unencrypted
messages or communication channel.

Repudiation

• Legacy solutions might not provide log system.

Information disclosure

• Malicious application developers could try to exfiltrate sensitive unen-
crypted user data already stored in cloud systems;

• An external attacker can intercept and eavesdrop on the communication
between the client applications and the cloud systems with unencrypted
message or channel;

Elevation of privilege

• A local administrator or an attacker can elevate some user privilege
locally giving access to sensitive user data.

1.3 General security requirements

• The system must provide defense mechanisms preventing access to un-
encrypted data flows;

• All the parties involved in the system must be authenticated and au-
thorised by the user;

• The communication channels among entities belonging to the system
or their related messages must be encrypted;

• The system must provide the ways for the user to verify the integrity
of data at any stage of processing.

14

1.4 Stritzinger - No-Stop RFID

Within this use case scenario a system presented in Section 1 of Chapter 5
(i.e., Deliverable 2.1) and described in Figure 3 is composed of the follow-
ing components: the RFID tags that are moving on the conveyor belt, the
RFID readers that can read and write the data to and from the RFID tags,
and a distributed cache of RFID content featuring completed and missing
steps. The readers communicate with each other through Ethernet network
by flooding all the latest updates to keep the cache data consistent.

RFID cache

RFID
reader/writer

RFID
reader/writer

RFID tag RFID tag

step status

cache update

Figure 3: DFD - No-Stop RFID

1.4.1 Trust model and assumptions

We assume that the factory premises are protected from physical access by
unauthorised parties that could otherwise gain full control over the cached
data. Given such restricted environment of the factory premises the only
actors constantly interacting with the system are the factory workers. How-
ever, the RFID readers manufacturers and firmware developers have limited
access to the system during its deployment, testing or upgrading.

15

In addition, due to resource constraints of the readers, their communi-
cation is unencrypted and solely relies on efficiency of firewall rules at the
higher level of the network and the aforementioned physical access control
at the factory.

1.4.2 Security analysis

Despite the protected environment in which the No-Stop RFID system is de-
ployed, its elements face threats that could compromise the manufacturing
process. The classes of threats to each element is exposed to are presented
in Table 3 and further discussed.

Table 3: Class of threats identified per element.
Threat RFID tag RFID reader/writer RFID cache

Spoofing 7 7 7

Data tampering 7 7 7

Repudiation 7 7 7

Information Disclosure 7 7 7

Denial-of-Service (DoS) - 7 7

Elevation of Privilege - - -

RFID tag

Spoofing

• An attacker can use cheap RFID tags to provide bogus data to the
reader and consequently to the cache system.

Data tampering

• The factory workers might be intentionally or unintentionally tamper-
ing with the data in RFID tags.

Repudiation

• Without authentication, it is impossible to identify if data is being
provided by an authentic tag.

16

Information disclosure

• Without cryptography, an attacker could read data in the tags resorting
to ordinary RFID readers.

RFID reader/writer

Spoofing

• Without authentication, an attacker could write bogus data in RFID
tags, compromising the factory control.

Data tampering

• The factory workers might be intentionally or unintentionally tamper-
ing with the data being read through unencrypted channel;

• RFID readers manufacturers and their respective software developers
might also carry a stealthy attack.

Repudiation

• Without authentication, it is impossible to identify if data was provided
by an authentic writer.

Information disclosure

• By overpassing the firewall, an attacker could eavesdrop data transmit-
ted through unencrypted ethernet communication among readers and
between reader and cache system.

Denial-of-Service (DoS)

• By using cheap RFID tags an attacker can perform a DoS attack to
the readers slowing down or stoping the manufacturing process

RFID cache

Spoofing

17

• An attacker can compromise the firewall and gain unrestricted access
to the readers’ network;

Data tampering

• The factory workers might be intentionally or unintentionally tamper-
ing with the cache data;

• An attacker could manipulate the data transmitted through unen-
crypted ethernet communications.

Repudiation

• Without authentication, it is impossible to identify if data is being
provided by an authentic RFID writer.

Information disclosure

• By overpassing the firewall an attacker can access sensitive information
about the factory.

Denial-of-Service (DoS)

• By overpassing the firewall an attacker can perform a DoS attack to
the cache system slowing down or stoping the manufacturing process.

1.4.3 General security requirements

• The system must be able to protect the cache data from eavesdropping
or manipulating by unauthorised parties;

• The communication between the readers must be secured and resistant
to DoS attacks;

• The system must provide a way for the factory owners to verify the
authenticity of RFID tags and reader software and hardware;

• Any modifications to the cache data must be detected and flagged
without affecting the manufacturing process.

18

1.5 Gluk - Agriculture sensing analytics

The use case scenario described in Chapter 6 (i.e., Deliverable 2.1) presents
a sensor-based platform for precision agriculture which allows for collecting,
analyzing and reacting to field sensor data in near real-time. It collects
the readings from thousands of field sensor nodes, aggregates these values
at the edge gateway and finally sends them to the cloud service for further
processing. The cloud backend provides an interface for statistical analysis
and data visualisation (i.e., Dashboard in Figure 4), and creates rules and
patterns for actuators using machine learning. These rules are then uploaded
back to the edge gateway which allows for local real-time decision making
and action without the cloud support. Figure 4 shows all the main entities
and relations into this use case.

The proposed system is planned to be used by several parties. Farmers
rely on the system to facilitate and automate the process of farming, generate
agriculture analytics and provide useful insights on their activity. Insurance
companies review statistical data in order to calculate a potential risk for an
insured product (e.g. crops). Scientists and researchers share trigger rules
and patterns that allow for an optimised cultivation. Software developers
create applications for edge nodes and actuators to react to changes in the
environment according to the configured rules and patterns.

1.5.1 Trust model and assumptions

We assume the hardware of sensor and gateway nodes to be trusted and
operating as stated in the specification sheets. In this way, potential attackers
might be competitors of the system owner, application developers, rules and
patterns creators, cloud backend service and wireless connectivity providers.
The system owner himself might appear as an attacker. For instance, by
manipulating the statistical data before releasing it to the insurance company.
A detailed model encompassing all the identified threats to which the system
is exposed to is presented in Section 1.5.2.

We also assume the front-end (i.e., Dashboard) to only read data from
the cloud in order to provide visual information to its users, e.g., farmers.

1.5.2 Security analysis

Table 4 summarises the classes of threats identified for every element of the
system detailed in the data flow diagram depicted in Figure 4.

19

Cloud

Gateway /
Basestation

Sensor Actuator

Sensed data Action

Rules and patternsAggregated data

Dashboard

Figure 4: DFD - Agriculture sensing analytics

Table 4: Class of threats identified per element.
Threat Dashboard Cloud Gateway Sensor Actuator

Spoofing 7 7 7 7 7

Data tampering 7 7 7 7 7

Repudiation - 7 - 7 7

Information Disclosure 7 7 7 7 7

Denial-of-Service (DoS) - - 7 7 7

Elevation of Privilege - - 7 - 7

Dashboard/GUI

According to Gluk, due to the lack of technological skills of the main
users (i.e., farmers), the system has to provide simple and transparent ways
of interaction at the front end.

Spoofing

20

• A ”phishing attack” could steal credentials from system administrators;

• An attacker can connect to the dashboard resorting to a week authen-
tication system.

Data tampering

• In presence of unencrypted messages or communication channel, a
”man in the middle” attack could provide bogus data to farmers or
other stakeholders.

Information disclosure

• An attacker can act as a ”man in the middle” and access sensitive
information in communications without endpoints connection authen-
tication.

Cloud - backend system

Spoofing

• An attacker could use the lack of encryption or weak authentication
factors to access the backend system as an analyst.

Data tampering

• Cloud storage providers can have unlimited access to the client data
stored at their premises, allowing untraceable modifications;

• An analyst could provide bogus rules and patterns forcing a wrong
behavior by the actuators in the field;

• Farmers could manipulate the statistical data before releasing it to
insurance companies;

• The backend system could provide bogus information about potential
failures (reset, replace, or recalibrate the sensor, etc).

Repudiation

21

• Cloud storage providers can have untraceable access to the client data.

Information disclosure

• The client data can be analyzed or shared with third parties. Such
information might be of a commercial secret, thus leaking it might
cause the company to loose its competitive advantages on the market.

Gateway - basestation

Spoofing

• An attacker could set a fake gateway either providing crafted data to
the backend system or accessing business intelligence. A spurious gate-
way could also read data transmitted from sensors and more critically
to actuators.

Data tampering

• By modifying the rules and patterns an attacker could manipulate the
actuators state and affect the utility of the provided services;

• The gateway can provide crafted sensed data to the backend system,
compromising data analytics.

Information disclosure

• An attacker might configure a malicious version of the gateway appli-
cation to leak the sensor data, rules and patterns to third parties;

• Unencrypted communications between sensors/actuators and the gate-
way might expose sensitive data.

Denial-of-Service (DoS)

• An attacker with sufficient resources and competence could carry a DoS
attack on wireless medium. By simply broadcasting radio signals on
the same frequency the nodes use for communication and overpowering
the original signal, an attacker can efficiently jam the network.

22

Elevation of privilege

• An attacker could reprogram the gateway to accept commands from
unauthorised entities;

• Bandwidth resources can be abused by a malicious application running
on the gateway by generating significant volumes of traffic and causing
higher bills;

• An attacker could control the state of actuators and send false admin-
istrative commands.

Sensor

Globally, the main threats to which sensors are exposed to arise from the
lack of authentication and encrypted communication channels.

Spoofing

• Without node authentication, an attacker can easily set fake sensors.

Data tampering

• An attacker might send crafted sensor readings to the gateway node to
trigger certain automations that might have devastating effects on the
crops;

• In multi-hop topologies, an unauthorised sensor could tamper with data
from many other sensors, which might be catastrophic.

Repudiation

• Considering the lack of authentication, it might be impossible to iden-
tify data from fake sensors;

Information disclosure

• Without encryption, an attacker can read information from the wireless
communications.

23

Denial-of-Service (DoS)

• An attacker might manipulate the sensor node software so that it con-
stantly transmits sensor readings or any arbitrary data to the gateway
node or other sensor nodes, draining its battery faster;

• An attacker can broadcast radio signals on the same frequency the
sensors use for communication, jamming the network.

Actuator

As observed for the sensors, the absence of secure communications is the
main source of threats in actuator nodes.

Spoofing

• In multi-hop topologies, a fake actuator could distribute diverse bogus
administrative commands.

Data tampering

• An attacker could send crafted action requests or reprogramming codes
to compromise actuators;

Repudiation

• It might be impossible to identify which entity has sent a specific action
request to the actuators.

Information disclosure

• Without encryption, an attacker can read information from the wire-
less communications, which correlated with sensed data might expose
sensitive data about the farm analytics.

Denial-of-Service (DoS)

• An attacker could provoke a battery depletion through continuous re-
quests;

24

• An attacker can broadcast radio signals on the same frequency the
actuators use for communication preventing them to receive authentic
requests.

Elevation of privilege

• An attacker could control the state of actuators from the cloud backend
and send false administrative commands.

1.5.3 General security requirements

• Every node in the network must be identified and checked for any
software or hardware modifications before being added to the network.
All nodes failing this check must remain isolated from the rest of the
network;

• The gateways must be able to identify the sensor nodes abusing the
wireless and battery resources and have ways to isolate those from the
rest of the network;

• The system must prevent any changes to the sensor readings and the
actuators commands at the time they are generated, transmitted and
processed. Any manipulation with the data along the way must be
detected and reported;

• The data generated by the system must be only accessible to the autho-
rised entities (e.g. network nodes, applications, system administrators).
The system must ensure secure communication channels and storage;

• The system must be robust and fault tolerant. It must adapt to changes
in the wireless environment and withstand the DoS attacks. Each com-
munication channel must be replicated to ensure data availability and
timely delivery;

• The sensor data must be verified for correctness before the action is
taken upon it. The system must detect the deviations in the sensor
reading reported by the sensors that are close to each other, cross-check
the values and discard suspicious readings. Any repeated, conflicting
or inconsistent actuators commands must be detected and discarded as
well.

25

	Executive Summary
	Introduction
	General Motivations and Approach
	Contributions
	Relation to other WPs
	Summary of Deliverable Revision
	Organization of the Report

	Plan and Progress
	Plan and Milestones
	Plan for the first half of Year 2
	Plan for the second half of the project

	Understanding CRDT Models
	Overview on Conflict-free replicated data types
	Advanced CRDTs
	Towards a model-agnostic CRDTs

	Further Progress on CRDT Models
	Pure Operation-based CRDTs at the edge
	State-based CRDTs at the edge

	Communication Abstractions for Edge Computing
	End-to-End Causal Delivery
	Progress on Communication Layer Abstractions

	Towards Partial Replication at the Edge
	From Saturn to Gesto: towards partial replication at the edge
	Practical Causal Consistency for Geo-replicated Stores

	List of Software and Prototypes
	Advancing state of the art

	Threat Analysis for LightKone Use-cases
	UPC - Coordination between servers and data storage for the Guifi.net monitoring system
	Scality - Pre-indexing at the edge
	Stritzinger - No-Stop RFID
	Gluk - Self-sufficient precision agriculture management for irrigation

	Exploratory Research
	A model-agnostic CRDT definition language
	Securing Smart Hubs through N-Version Programming
	Edge Hub Architecture based on N-Version Trusted Functions
	Detection of Unit Result Divergence
	Nondeterministic Inputs
	Main Findings
	Discussion

	BISEN: Efficient Boolean Searchable Symmetric Encryption
	Solution
	Technical Overview
	Discussion

	Annotated Publications & Dissemination
	Dissemination

	Bibliography
	Threat Model of LightKone use-cases

