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Chapter 1

Executive Summary

This document presents the formal requirements of the use cases selected from the large
number initially identified.

Chapter 2 describes the common generic architecture and explains how the four use
cases selected from Deliverable 2.1 refine it. It also introduces TLA+ and Timed
Automata, the formalisms used in the following chapters.

Chapter 3 describes the TLA+ specification of the Guifi.net network monitoring use
case. We first specify the operations for the case of the centralized database. Sec-
ondly, we present the overall structure of the TLA+ specification and the operations
revised for the case of the distributed database.

In Chapter 4 we specify the Scality use case of pre-indexing at the edge. We use a
specification technique based on abstract executions here. This allows us to sepa-
rate the concerns of the general application behaviour and the different consistency
levels the system must support to be applicable to different deployment scenarios.

Chapter 5 proposes an approach to make the nodes from Stritzinger’s RFID-based
use case communicate with each other to avoid downtimes interacting with RFID
tags. The contribution is two-fold. On one hand it examines and identifies key
situations where the conveyor may have to stop, and how to avoid them. On the
other hand, it provides a formalisation using Timed Automata of a concrete sce-
nario, verifying several useful properties regarding the time each operation (and the
full process) can take.

In Chapter 6 we provide a state trajectory analysis for Gluk’s irrigation system use
case. We review the concepts of abstract modelling and a DES modelling approach.
We then explore the system states and their transition trajectory. Finally, we formu-
late the constraints for the system edge controller that must account for high sensor
failure rate, and reason about the controller design and functionality.

1 Summary of Deliverable Revision

This deliverable has been revised since its original submission to incorporate comments
and modifications requested by the European Commission Reviewers. The main changes

1



CHAPTER 1. EXECUTIVE SUMMARY

made to the deliverable are as follows:

e Use cases from UPC Chapter 3 and Scality Chapter 4 have been updated to be
independent of the LightKone technologies that will be used in the development
step.

e A completely new use-case has been added from Gluk.

e Requirements analysis has been added for all use cases using SysML/UML in chap-
ter 7, the requirement analysis contains the target requirements for the evaluation
phase.

LightKone D2.2(v2.0), January 15, 2019, Page 2



Chapter 2

Common Edge Computing
Formalization

1 Introduction

For the formalization, each industrial partner chose one preferred use case among the use
cases in Deliverable D2.1, giving four use cases in all. When the work of analysing these
use cases started, we discovered that all four share a common generic architecture, despite
being introduced completely independently. In this chapter we present this generic archi-
tecture and we explain how the four use cases refine it. We also introduce the formalisms
we will be using in the remainder of this report by showing how they can be used for the
generic architecture.



CHAPTER 2. COMMON EDGE COMPUTING FORMALIZATION

Generic 3-tier Edge nodes —> Middle nodes ——> Center nodes
architecture large number medium number, peer-to-peer small number

Specializations

Zigbee Cloud
Sensors u
Gluk power —> Gateways —> Server €=> (off-site)

Home Radio Radio
Guifi devices €2 Local nodes ——> Servers ——> Database
L RFID tags Mobile Cloud
<>
Stritzinger memory only Embedded nodes === Server <_>(off-sit*e)
Scality Client apps €—> Pre-compute nodes €—> Cloud

—> direction of communication

Zigbee  refinement of generic architecture

Figure 1.1: The generic edge architecture and its specializations by the four use cases.

2 Generic architecture

The generic architecture for edge computing has three tiers, namely edge nodes, middle
nodes, and center nodes. Edge nodes are most numerous, with fewer middle nodes, and
just a small number of center nodes. The main direction of communication is from edge
to middle, and from middle to center. Edge nodes may or may not communicate with
each other, while middle nodes always do. Edge nodes may or may not have computing
power, while the middle nodes always do. An important task, realized most strongly in
the Gluk and Guifi use cases, is data aggregation and monitoring, which is done with
mostly one-way communication.

Each of the four use cases specializes the generic architecture in a different way. Fig-
ure 1.1 gives a diagram that shows the generic architecture and the four use cases. We
explain individually each of the use case’s specializations.

Gluk use case In the Gluk use case, sensors are low-power and mostly off; all they do is
send data periodically to the middle nodes through a low-power protocol such as Zigbee.
The Gluk use case is the only one of the four that monitors real-world properties (such
as temperature, humidity, and CO, concentration). The current application is monitoring
using an Azure service for analytics and display, however future extensions for doing
management are planned. Management requires communication from the center toward
the edge.

UPC use case In the UPC use case, based on the Guifi.net network, local nodes are
specialized hardware boxes installed at each home, with a radio or fiber link to other lo-
cal nodes in the vicinity and IP routing to the whole Guifi.net network nodes. All home

LightKone D2.2(v2.0), January 15, 2019, Page 4



CHAPTER 2. COMMON EDGE COMPUTING FORMALIZATION

devices connect to this network, and to the Internet, through their local node. The first ap-
plication will be monitoring certain aspects of the different local nodes (tens of thousands
of them), such as availability and uptime, network traffic, etc., which will be the basis for
further developments out of the scope of LightKone such as automated billing processes,
smart network management, etc. To achieve this, a number of monitoring servers are
scattered through all the network and concurrently access a distributed database.

Stritzinger use case In the Stritzinger use case, RFID tags have only memory and are
mobile. When an RFID tag is physically close to an embedded node, there is a communi-
cation link and the RFID tag’s memory can be read and written. The RFID tag is attached
to a product being manufactured. It contains information on the product and its status in
the manufacturing process. Information in all RFID tags must be consistent with each
other and with the product. The first application is maintaining consistency in the RFID
tags, even if they do not stop when close to an embedded node (“No-Stop RFID”): this
means that data can be only partially read and written by the embedded node. A later
application is distributed planning, which plans the tasks in the factory and is done in dis-
tributed fashion by the embedded nodes and the server. An important use for distributed
planning is handling contingencies, such as processing stations being off-line.

Scality use case In the Scality use case, client apps are typically personal computers or
smartphones and have significant compute power. They cache data and indexing informa-
tion from the cloud database. The pre-compute nodes continuously maintain the data and
index close to the client, so that the client perceives increased performance. Consistency
between the pre-compute nodes and the cloud database is an important requirement.

3 TLA+

TLA+ [16] is a formal specification language based on basic set theory and predicate
logic, especially well suited for writing high-level specifications of concurrent and dis-
tributed systems [15]. A TLA+ specification represents a system as a state machine,
where the state of the system is an assignment of values to variables. Typically, a TLA+
specification is defined as

Spec = Init AO[Next],qrs A Liveness

Predicate Init is a formula that defines what are the acceptable initial states. From the
initial state, every system transition, either leaves the state unchanged or performs a state
transition as defined by the formula Nex?, which changes variables vars (a tuple of all
state variables). The values assigned to variables on each state come either from inputs
(constants), or libraries like Naturals or Integers. Note that Spec can generate multiple
execution traces due to the number of possible initial states satisfied by Init, and all com-
binations of the possible system actions, defined in the Next with multiple disjunction
clauses. Liveness is a temporal logic formula expressing the liveness properties of the
system, defined as the conjunction of fairness conditions on actions.

LightKone D2.2(v2.0), January 15, 2019, Page 5



CHAPTER 2. COMMON EDGE COMPUTING FORMALIZATION

TLC is a model checker for specifications written in TLA+. It finds all possible system
behaviours, i.e, exhaustively checks all possible execution traces, and verifies if any of
them violates the invariant properties such as safety and liveness. Safety properties can be
described as what the system is allowed to do, while liveness properties can be described
as what the system must eventually do [19]. Therefore, the TLC model checker provides
a verification of the system specification and its properties [22]. The procedure used by
the model checker to compute all possible behaviours uses a directed graph, whose nodes
are states, and has 4 main steps:

1. Computation of all initial states, by computing all possible assignments of values
to variables that satisfy /Init;

2. For every state found in step 1, compute all possible next states by substituting the
values assigned to variables, with the actions defined in the Next formula;

3. For every state found in step 2, if it is not already in the graph, it is added, and an
edge is drawn from the state that generated it, to it.

4. Steps 2 and 3 are repeated until no new states or edges can be added to the graph.

When this process terminates, the nodes of the graph correspond to all the reachable states
of the specification. The process either ends with a state that is supposed to happen and
marks the end of the execution, or with a deadlock, a state from which there is no next
state satisfying the Next formula, but corresponds to a situation not supposed to happen.

TLA+ has been increasingly use by projects in the industry for the ability to ex-
plore unexpected combinations of events, verify complex designs, make innovative per-
formance optimisations, but mainly because it allows developers to precisely check the
safety of a system, and therefore avoid serious bugs from reaching production.

4 Abstract execution formalization

Clients typically cannot observe the internal ordering of events and messages in a system.
They can only observe when their operations are started and when and what they return.
The history of operation invocations (including times and results) is called a concrete
execution. From a client perspective, there can in general be multiple orderings of all
system events, that would explain a given concrete execution. The explanation with the
ordering of all events is called an abstract execution.

To specify a system using abstract executions, one has to specify conditions for the
result values of an abstract execution and what constraints exist on the ordering of events
in the system. Both can be specified using standard mathematical and logical notations
(we mainly use first order logic in this document). The latter is usually called the consis-
tency model. This technique of specification is described in detail in [9]. We only give a
very brief overview here. Formally, an abstract execution consists of:

e A set E of events.

LightKone D2.2(v2.0), January 15, 2019, Page 6



CHAPTER 2. COMMON EDGE COMPUTING FORMALIZATION

e A labeling op, which defines the operation (including arguments) for each event in
E.

e A labeling rval, which defines the return value for every event in E.

e A partial order rb (returns before) on E. We write e; <, e> iff event e returned a
value before e; was started.

e An equivalence relation ss (same session) over E. This relation depends on how
clients interact with the system. Typically, two events are in the same session, if
they came from the same client using the same connection. Based on ss, we can

. def
also define a session order so = rbNss.

e A relation vis (visibility) on E. We write e| <, e> if the effect of event e is visible
when execution event e;.

e A total order ar (arbitration) on £, which can be used to order concurrent events to
get a deterministic specification.

Using these elements, the system behaviour is specified. Everything that is nondeter-
ministic from a client’s perspective is captured in the relations vis and ar. A consistency
model defines restrictions on vis and ar, which have to be respected by the system. This
means, an implementation is correct, if for each concrete execution one can find relations
vis and ar to get an abstract execution that explains the results of the concrete one.

5 Timed Automata formalization

Timed automata [4, 6, 8] is one of the most widely used formal models to specify and ver-
ify real-time systems. Using timed automata, one can model and verify a system whose
behaviour is influenced by the passage of time. Formally, a timed automaton is a finite au-
tomaton extended with a set of dedicated real-valued variables called clocks. Transitions
are labelled by clock-constraints, i.e., constraints defined on clock variables, restricting
the behaviour of an automaton, and states are labelled with other clock-constraints spec-
ifying invariants. All clocks of an automaton are initially set to zero and increase syn-
chronously whenever time evolves. Transitions may additionally reset selected clocks
when being taken.

5.1 Specifying Timed Automata

Timed automata are labelled transition systems enriched with constraints over so-called
clocks. A clock is a special variable capturing the time passed since it was last reset.

Definition 1 (Clock Constraint). A clock constraint g over a set of clocks C, written g €
CC(C), is given by the grammar below, wheren € N, x,y € Cand © € {>,>,=,<,<}.

gu=true | xOn|x—yon|gAg,

LightKone D2.2(v2.0), January 15, 2019, Page 7
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x>15 x>40
leave;!

arrvy!
=0

moving; » z=35

work>!

atN> arrvy?
x<20 y:=0

z:=0
leave,!

working working
y<s yss
x:=0 leave;?

Prod N; N>

leave;?

Figure 5.1: Network of three timed automata, modelling a product (left) and two nodes
(right), communicating via the actions leave; and arrv;.

Definition 2 (Timed Automata). A timed automaton is a tuple (L,¢y,X,C,T,Inv) where L
is a finite set of locations, {y € L is the initial location, ¥ is a finite alphabet of actions, C
is a set of clocks, T C L x CC(C) x £ x 2 x L is the set of transitions, CC(C) denotes the
set of all clock constraints over C, and Inv : L — CC(C) assigns invariants to locations.

Informally, a connector in a location ¢ can evolve either by (1) letting time pass with-
out leaving its location, by incrementing all its clocks without breaking the invariant

Inv({), or by (2) taking a transition £ $4C, 07 if the conditions g and Inv(¢') hold, go-
ing to the location ¢, setting the clocks in C to zero, and leaving the remaining clocks
unchanged (i.e., time does not pass when performing actions).

The actions in the alphabet X are used to synchronise with other automata. More
precisely, two automata with a shared action a € X are only allowed to take a transition la-
belled with @ when the other automata can also take a transition with a. A set of automata
running in parallel, synchronising actions and evolving their clocks simultaneously, is
called a network of timed automata. We follow the convention that action synchronisa-
tion can only occur in pairs, and we use their notation a! and a? to mean that performing
a! triggers a? to be performed [7]. Furthermore, we omit clock constraints, actions, and
reset sets from the labels whenever they are true, irrelevant, and @, respectively. This is
illustrated in the example below with a network of two timed automata.

Example 1. We depict in Figure 5.1 a network of two simple timed automata, where angle
brackets (-) denote guards on edges, and initial states have double lines.

Initially all the first and last automata are in their left locations and the middle one is
in its right location, and their clocks x,y,z are set to 0. The leftmost automaton cannot be
longer than 20 time units in its initial location, and it can only perform a leave; action
after at least 15 time units. Once it performs this action, it will move to the moving; >
location, where it will stay between 40 and 50 time units. The middle automaton will
synchronise with the leave; action and will move into a waiting location, where it will
stay until edge arrv; synchronise with the leftmost automaton. More generally, the first
automaton describes the time to stay at each node and the time to move between nodes,
and the other two describe the time needed to perform working actions, e.g., read or write
blocks of data to the tag in the node.

We use the UPPAAL model checker to specify and verify timed automata [6, 8]. UP-
PAAL supports extra extensions that ease the formalisation, including notions such as

LightKone D2.2(v2.0), January 15, 2019, Page 8
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committed states, internal variables, and parametric actions, not described here.

5.2 Verifying Timed Automata with UPPAAL

This section presents a temporal logic—Timed Computation Tree Logic (TCTL) [4, 7]—,
used by UPPAAL to describe desired properties of (networks of) timed automata. This
logic consists of path formulas ¢, which in turn use more dedicated state formulas .
State formulas are defined over automata locations and clocks.

Definition 3 (TCTL formulas). A TCTL formula ¢ is given by the grammar below.

¢ = Oy [VOoy Iy [VOy [y1 = v
v i=Allg| v iV |l viAwy |y =y

A.l represents the location ¢ in the automaton A, g is a clock constraint, and —, V, N\
and = represent the usual logical negation, disjunction, conjunction, and implication.
The temporal operators 3, ¥, , and U] describe the range of states for which the state
formulas y must hold, and Wy, — ; is a shorthand for YO (y; = YO y,) (Which cannot
be written in our syntax), read Yy leads to y».

We explain some of these temporal operators using the timed automata in Figure 5.1.

- 30 v means that there must exist a sequence of transitions where y holds at some point.
Example: 3O N;.working = (x > 17) — the clock x can become higher than 17 while in
location working in Nj.

- VO v means that for every sequences of transitions, Y can hold at some point.
Example: VOx > 17 — at any given point of the execution, one can find a future state
where x is higher than 17.

- 0w means that there must exist a sequence of transitions such that W always holds.
Example: 301 (x = 11) = N;.waiting — it is possible that the clock x reaches the value 11
only when N; is in its waiting location, or that x never reaches 11.

- YUy means that for every sequence of transitions, ¥ must always hold.
Example: V[ (x > 0 Ax < 40) — the clock x will always be within 0 and 40.

- Y1 — Y, means that whenever y; holds then y, must hold at some point.
Example: N;.working — Prod.moving; > — every time N;.working; is reached, it will
eventually reach Prod.moving; > at some point in time.

UPPAAL notation. In UPPAAL expressions and properties are written in plain ASCII.
Our representation follows closely UPPAAL’s one, writing: ‘=" instead of ‘imply’, ‘=’
instead of ‘——>’, ‘A’ instead of ‘and’, ‘V’ instead of ‘or’, ‘V’ instead of ‘A’, ‘3’ instead
of ‘E’, ‘[0’ instead of ‘[]’, and ‘¢’ instead of ‘<>’.

LightKone D2.2(v2.0), January 15, 2019, Page 9
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Chapter 3
UPC

1 Introduction: Network monitoring use case

The current monitoring system for Guifi.net’s network devices is built around a centralised
database that lists all the devices in the network and assigns them among a number of
servers, which are geographically spread all over the network and take care of monitor-
ing the infrastructure. Each monitoring server periodically fetches its assigned devices
list from the central database; then it checks for their status, gathers information about
their network interfaces, etc. The assignation of a network device to its monitoring server
is mostly static and rarely changes over time. All the information collected stays lo-
cal to the different monitoring servers, not being automatically replicated or distributed
between them or elsewhere. This current system fulfils most of the basic monitoring
needs but it has several limitations and shortcomings, as it does not leverage technolo-
gies for automation, distribution of the workload and decentralisation of coordination and
decision-making. To name a few:

e No redundancy: every device is monitored by a single server
e No load balancing between monitoring servers

e No automatic detection of server failures and reassignment of devices to another
monitoring server

e No replication or distribution of collected data

e Need for manual intervention: devices usually require to be manually assigned to a
specific monitoring server

UPC'’s use case reimplements the current monitoring system to improve its resilience
and reliability by means of automation, distribution and decentralisation. It will leverage
distributed data structures to support the distributed coordination of monitoring servers
in performing the assignation of network devices between them in a decentralized fash-
ion. The monitoring servers keep a distributed monitoring servers < network devices
mapping which they use to dynamically assign (and unassign) themselves which devices
to monitor in function of different criteria. Such dynamic mapping is to be concurrently
modified by any of the participating servers, incurring in operations potentially leading

11



CHAPTER 3. UPC

to inconsistent data. To overcome this, bringing the CRDTs technology into the applica-
tion would allow delegating data synchronisation and consistency to the underlying data
storage level, ensure certain properties (namely, consistent data replication) to the upper
layers.

The main computations of the application consist in editing mapping between the two
sets, network devices and monitoring servers, while keeping it in a consistent status and
ensuring that every device is being actively monitored by a predefined minimum number
of servers at any time.

2 Network monitoring use case description

Figure 2.1 provides a high-level overview of the monitoring system. A number (n) of
monitoring servers, drawn on the top left corner, are the primary actors that perform
actions within the system. These servers are composed by two items, the assignment
and the monitoring components. The monitoring service has functional requirements
regarding what a monitoring system should provide, which consist in a set of read and
write operations to be carried out by the different primary and secondary actors. The
required services operate on top of a distributed storage service.

The assignment component within each monitoring server carries out the mapping of
the networking devices assigned to itself. For this, the assignment component shall read
the current data of the assignments of all monitoring server from a distributed storage
service in order to obtain the latest assignments. In order to take precise decisions, the
assignment component shall obtain consistent data from the distributed storage service.
The assignment component shall write the new assignment data of its own assignment,
decided by itself, to the distributed storage service in order to communicate to the other
monitoring server its latest assignment decisions taken. The decision that an assignment
component takes on its updated assignment can be extended by taking into account con-
textual information and additional decision support functions.

The monitoring component reads the monitoring data from the networking devices
(e.g., routers) and stores them in the distributed storage service. For this, the monitoring
component shall read the current monitoring data from the network device in order to be
able to store this data in the distributed storage service. Then, the monitoring component
shall write the monitoring data to the distributed storage service. If several data sets are
taken for the same networking device, the data to be stored shall be aggregated or merged.

Other actors are the Guifi.net database (Guifi DB), which supports the initialization of
the assignment. For this the Guifi DB shall provide the information about the available
monitoring servers and network devices to be written to the distributed storage service.
Information about the network state and about network devices can feed contextual infor-
mation. A distributed database shall provide the storage service to support the different
read and write actions.

With regards to the features enumerated in the previous section on the existing moni-
toring system, its limitations are clear and the improvements of the new implementation
target to overcome them, leading to achieve the following non-functional requirements:

e Automated assignment: no need for manual intervention to assign monitoring servers
to network devices. The system shall do the assignment automatically. In a perma-
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Figure 2.1: Monitoring system from the perspective of a UML use case diagram.

nent operation these services should run autonomously without manual interven-
tion.

e Automated reconfiguration: automatic detection of server failures and reassignment
of network devices to another monitoring server. The system shall carry out the
reconfiguration automatically. Each monitoring server responds to the situation of
the assignment of monitoring servers to network devices and takes a decision to
compensate failures of servers or network devices.

e Redundancy: every networking device is monitored by a several servers (i.e., the
monitoring servers check which network devices are less monitored and decide
autonomously if they become a monitor for this device).

e Load balancing between servers: assignment decisions take into account server
load. The load of the monitoring service on a monitoring server should not signifi-
cantly affect the user experience if the device is used for multiple services.

e Data replications: the collected data are replicated or distributed. In the case of
network partition or churn of some storage nodes the data should still be available
for being retrieved by the monitoring service.

The fulfillment of the requirements by the new monitoring system implementation
will be evaluated by performance metrics, the values of which will be positioned with
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respect to evaluation targets or evaluation criteria to assess its success. The evaluation tar-
gets/criteria for the success of the new implementation will be determined by high-level
aspects, and not by individual low-level technical performance metrics (see the corre-
sponding chapter to UPC’s use case in Guifi.net in the deliverable D7.1). The reason
is that what the Guifi community network from the new monitoring service in practice
needs is the reliable operation with improved usability, while tiny performance variations
will typically not be the critical path for the success in the practical usage of the new
monitoring system implementation.

We expect, however, that by the determined performance metrics and the measure-
ments to be done in the experimental deployments through the tasks of WP7, also low-
level performance characteristics of the network monitoring service will be obtained. The
results can bring valuable feedback to the research on the distributed storage service de-
sign. The specific performance metrics and evaluation targets/criteria we expect to apply
in the experimental evaluation of the network monitoring use case implementation are
further explained in deliverable D7.1.

3 First TLA+ Specification: Centralised Database

The specification presented in this section is an abstraction of the case study implemen-
tation. In particular, it abstracts the main cause of complexity of the monitoring system,
the fact that the system uses a geo-replicated distributed database. Instead, we are going
initially to assume a shared centralised database. This simplified setting abstracts away
all the complexities raised by distribution and is the ideal setting for defining the main
functionalities and the global invariants of the monitoring system.

The specification includes the following constants: (i) SERVERS, the set of servers;
(if) DEVICES, the set of devices; (iii) MINRATE, the minimum monitoring device rate;
(iv) MAXCAPACITY, that maximum monitoring capacity for each server; (v) MAXFAIL-
URES, the maximum number of crash failures the system is able to withstand. To ensure
that each device is monitored by at least MINRATE monitoring servers, a restriction is
needed to limit the number of simultaneous crash failures that can occur (# is the cardi-
nality operator):

(#SERVERS — MAXFAILURES) * MAXCAPACITY > #DEVICES * MINRATE

Beyond this limit the system cannot ensure the monitoring rate for all devices. Two
simplifications are assumed: a server’s maximum monitoring capacity and a device’s min-
imum monitoring rate are the same for all servers and devices, respectively. These sim-
plifications could easily be avoided, but they would make the specification unnecessarily
complex while not bringing any relevant contribution to the verification of the system
properties. Load balancing between servers is ensured by the constant MAXCAPACITY
that limits the number of devices monitored by each server. More sophisticated load
strategies could be specified, but this is the approach followed in the current implementa-
tion.

Figure 3.1 gives an overview of the Guifi.net TLA+ specification. The state represents
a centralised database and is modelled by two variables, the monitorisation relation and
the set of crashed servers. The monitorisation relation is a set of monitoring pairs of
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vars £ (monitorisation, crashed)
Monitor £ [server : SERVERS,device : DEVICES]
Typelnv £ A monitorisation C Monitor
A crashed C SERVERS
Init £ A monitorisation = 3 pairs C Monitor
AV d € DEVICES : #servers(d, pairs) > MINRATE
AV s € SERVERS : #devices(s, pairs) < MAXCAPACITY
A crashed = {}
Next £ 3¢ SERVERS,d € DEVICES : revoke(s,d) V assign(s,d) V crash(s)
Resilience £V d € DEVICES : #servers(d, monitorisation) > MINRATE
LoadBalacing = Vs € SERVERS : #devices(s, monitorisation) < MAXCAPACITY
Inv £ Resilience A\ LoadBalacing
Spec 2 Init A O[Next)yars A Olny

Figure 3.1: Overall structure of TLA+ specification of Guifi.net monitoring system
(global database).

type Monitor, where the first element is a server and the second element is a device. The
predicate Init initialises all variables. In particular the monitorisation relation is assigned
a nondeterministically chosen set of monitoring pairs that satisfy the minimum device rate
and maximum server capacity. The initialisation uses functions devices and servers not
presented here. Function devices determines the set of devices monitored by a server. The
dual function servers determines the set of servers that are monitoring a device. The Next
action describes all possible system actions. Namely, revoke (resp. assign) updates the
monitorisation relation by removing (resp. adding) a device from a server monitorisation.

The invariant Resilience expresses that all devices are monitored by at least MINRATE
servers, while invariant LoadBalacing expresses that the number of devices monitored by
any server does not exceed the maximum server capacity defined as MAXCAPACITY.

The formula Spec describes the overall behaviour of the system: it starts in one of the
acceptable initial states defined by Init, and every state transition either leaves the state
unchanged or performs one of the actions defined in Next. Moreover, every system state
satisfies the safety invariants Resilience and LoadBalacing.

Next, we describe the system actions. Action assign in Figure 3.2 represents the
assignment of a device to a monitoring server. The action is enabled, or executable,
if the three following conditions hold: the server srv is not crashed, device dvc is not
already monitored by server srv, and server srv has capacity to monitor one more device.
The execution of the action will update the monitorisation relation by adding this new
monitoring pair, while the crashed set stays unchanged.

Action revoke in Figure 3.3 unassigns device dvc to monitoring server srv. The action
is enabled if device dvc is actually monitored by server srv and the device is currently
monitored by at least MINRATE + 1 servers. This last condition ensures that after the
unassignment the device remains monitored by sufficient servers to satisfy the Resilience
invariant. The execution of revoke will update the monitorisation relation by removing
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assign(srv,dvc)

(# preconditions )

A srv & crashed

A [server — srv,device — dvc| ¢ monitorisation

A #devices(srv,monitorisation) < MAXCAPACITY

(» update system state x)

A monitorisation' = monitorisation U { [server — srv,device — dvc|}
A UNCHANGED(crashed)

Figure 3.2: TLA+ specification of action assign.

this monitoring pair, but does not modified the crashed set.

revoke(srv,dvc)

(# preconditions x)

A [server — srv,device — dvc| € monitorisation

N #servers(dve, monitorisation) > MINRATE + 1

(» update system state x)

A monitorisation’ = monitorisation \ {[server — srv,device — dvc]}
A crashed = crashed

Figure 3.3: TLA+ specification of action revoke.

Action crash represents a server crash (see Figure 3.4). In this first specification ver-
sion, devices being monitored by the server that crashed are immediately reassigned to
other remaining active servers. The action is enable if the server is not already crashed
and the maximum number of allowed crashes has not been reached.

The reassignment is described in the let expression of Figure 3.4. It selects non-
deterministically an assignment of the devices monitored by the crashed server to the
remaining “live” servers. This non-deterministic reassignment guarantees that the mon-
itoring rate of the devices is kept above the defined threshold, and that the capacity of
“live” servers is not exceeded.
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crash(srv) £  (« preconditions )
A srv & crashed
A #crashed < MAXFAILURES
(» update system state x)
A crashed' = crashed U{srv}

A LET devs % devices(srv,monitorisation)
assignment = {p € monitorisation : p.server = srv}
live £ SERVERS ) crashed’
reassignment =
3 pairs C [server € live,device € devs| :

AY d € devs : #servers(d, pairs) > MINRATE
A Y s € live : #devices(s,monitorisation) < MAXCAPACITY
LET monitorisation’ = (monitorisation \ assignment ) U reassignment

Figure 3.4: TLA+ specification of action crash.

4 Second TLA+ Specification: Distributed Database

This second specification considers that each server has its own replicated database. In
this setting, local operations are applied immediately to the server local database and
propagated in the background to other servers. Moreover, it is assumed that no messages
are lost and that remote operations are executed following a causal order.

Because there is no centralised global database, when executing an action within a
server the action preconditions are checked using local information. A consequence is that
several servers may decide concurrently to revoke the same device, because locally each
action preconditions holds, thus breaking the global Resilience invariant. To maintain
the invariant at all times it would be sufficient to use a bounded counter [5], a replicated
abstract data type that enforces numeric invariants while avoiding most coordination. The
key idea is to distribute rights to revoke a device between all servers. If a server has the
right needed to execute a revoke action, the action can safely execute locally, knowing
that the global invariant will not be broken. However, the special complexity of using
bounded counters in the case study implementation is prohibitive, since each counter has
a quadratic complexity on the number of servers and its necessary to have a counter per
device. An alternative is to relax the Resilience property and allow this invariant to be
temporarily broken. Assuming that the propagation time of remote operations is low,
detection and recovery of the invariant violation should be fast. The TLA+ specification
presented in this section checks the conditions under which the invariant is ensured to be
recovered.

Figure 4.1 gives an overview of the revised Guifi.net TLA+ specification. The system
specification has three variables, the configuration, the propagated messages, and the set
of crashed servers. The configuration keeps the local state of each server, which is a
record where the first element is the monitorisation relation and the second element is
the server vector clock. The variable msgs is a function that keeps for each server the
set of remote operations (messages) still to be executed. Messages propagated include all
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necessary information to execute a remote operation: the local server, the device, and the
type of action. The message vector clock is necessary to ensure that remote operations
are causally executed. The predicate Init initialises all variables. The configuration is
initialised such that all servers have the same monitorisation record, and the the vector
clocks start at zero. Also, initially there are no messages and the set of crashed servers is
empty.

Recovery is a temporal property that expresses that if the Resilience is broken in the
current state, then eventually Resilience will hold again in the future. When checking
temporal formulas it is necessary to include assumptions about the system’s environment.

vars £ (configuration, msgs, crashed)

VectorClock = [SERVERS — Nat]

State £ [monitorisation : P(SERVERS), vclock : VectorClock]

RemoteOp = [server : SERVERS,device : DEVICES, op : {revoke,assign},

velock : VectorClock]

Typelny £ A configuration € [SERVERS — State] A msgs € [SERVERS — P(RemoteOp)]
A crashed C SERVERS

Init £ A configuration = [srv € SERVERS
[monitorisation — initial,vclock — [s € SERVERS — 0]]]

A msgs = [s € SERVERS — {}]

A crashed = {}
Resilience = Y d € DEVICES : #servers(d, monitorisation) > MINRATE
Recovery £ —Resilience = QResilience
Fairness £ Vs € SERVERS,d € DEVICES : WF_vars(assign(s,d)) A WF_vars(remote(s,d))
Spec 2 Init A O[Next],urs A Fairness A CRecovery

Figure 4.1: Overall structure of TLA+ specification of Guifi.net monitoring system (dis-
tributed database).

Figure 4.1 gives an overview of the revised Guifi.net TLA+ specification. The system
specification has three variables, the configuration, the propagated messages, and the set
of crashed servers. The configuration keeps the local state of each server, which is a
record where the first element is the monitorisation relation and the second element is
the server vector clock. The variable msgs is a function that keeps for each server the
set of remote operations (messages) still to be executed. Messages propagated include all
necessary information to execute a remote operation: the local server, the device, and the
type of action. The message vector clock is necessary to ensure that remote operations are
causally executed. The predicate Init initialises all variables. The configuration variable is
initialised such that all servers have the same monitorisation record (set initial not shown
here), and the vector clocks start at zero. Also, initially there are no messages and the
set of crashed servers is empty. As said at the beginning of this section, the Resilience
invariant is going to be relaxed so it can be temporarily broken. This is expressed by the
recovery Recovery property, which is a temporal formula stating that if the Resilience is
broken in the current state, then eventually Resilience will hold again in the future. When
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checking temporal formulas it is necessary to include assumptions about the system’s
environment. In the specification of Figure 4.1 it is assumed weak fairness, that says that
when an action is continuously enabled, the action will be eventually executed. In TLA+
weak fairness means that the system is permitted only a finite number of stuttering steps (a
step that leaves all variables unchanged) before executing an action. In our specification
the system has to choose to execute actions remote and assign action regularly.

Next we present the assign action (Figure 4.2), while dual action revoke is presented
in Appendix 1 where the complete TLA+ specification is listed. The let expression starts
by accessing the local state of server srv and follows by defining the updated vector
clock. The new vector clock only increments the server logical vector by one, while
all other servers logical clocks remain unchanged. The monitorisation relation is updated
by adding a new monitoring pair. Then the new local state is defined as a record with
the updated monitorisation relation (new_mt) and vector clock (new_vc). Also, a message
describing the action being executed is prepared. If the action preconditions hold, the lo-
cal state of the server evolves and the action just executed is propagated to other servers.
The message propagation is represented by adding message op in the message set of other
servers. The set of crashed server remains unchanged.

assign(srv,dve) =

LET state =  configuration[srv]
new.vce = |[state.vclock EXCEPT ![srv] = @ + 1]
new.mt £ state.monitorisation\U{[server — srv,device — dvc]}
new_state = [monitorisation — new_mt,vclock — new_vc]
op = [server — srv,device — dvc,op — assign,vclock — new_vc|
IN (» preconditions x)

A [server — srv,device — dvc| ¢ state.monitorisation

A #devices(srv, state.monitorisation)) < MAXCAPACITY

(» update server local state x)

A configuration’ = [configuration EXCEPT ![srv] = new_state|

A msgs' = [s € SERVERS +— IF s = srv THEN msgs[s|] ELSE msgs[s] Uop]
A crashed' = crashed

Figure 4.2: TLA+ specification of action assign.

Action remote, presented in Figure 4.3, describes the execution of a remote operation.
The remote action to be executed is non-deterministically selected from the set of pending
remote action (messages) that satisfy the causality relation. So, there is no pending remote
action that happened before the action just picked. As in the previous action, the let
expression starts by accessing the local state of server srv and updating the vector clock.
The monitorisation relation is updated according the type of remote action being executed
locally. If the remote action was an assign, then a new monitoring pair is added to the
local monitorisation relation. Otherwise, it removes a monitoring pair from the local
monitorisation relation. Finally, the local state of the server evolves, and the remote
action just executed its removed from its pending remote actions. The set of crashed
server remains unchanged.
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remote(srv) =
Jop € msgs[srv] : ]

LET state = configuration|srv]
newvc £ [s € SERVERS > IF s = srv THEN state.vclock[s] + 1
ELSE max(state.vclock|s],op.vclock[op.server])]
new_mt = IF op.operation = assign

THEN state.monitorisation U {[server — srv,device — dvc|}
ELSE state.monitorisation \ {[server — srv,device — dvc|}]

new_state = [monitorisation — new_mt,vclock — new_vc]

IN (» preconditions x)

AY opl € msgs[srv] : —happenbefore(opl.vclock,op.vclock)

(» update server local state x)

A configuration’ = [configuration EXCEPT ![srv] = new_state|

A msgs' = [msgs EXCEPT ![srv] = msgs[srv]\ {op}]

A crashed' = crashed

Figure 4.3: TLA+ specification of action remote.

5 Verification

Both specifications where verified with model checker TLC. For the first specification
a small model with three servers and five devices was defined and relevant invariants
where checked in a few milliseconds. For the second specification, modelling a distributed
database, it was necessary to impose restrictions on the number of actions executed to be
able to check the Recovery invariant. The question is that messages (remote operations)
can be read in many different orders, which leads to a state explosion. By restricting the
number of operations to a small number, TLC was able to check the Recovery invariant in
three minutes.
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Scality

1 Use case: Multi-cloud metadata search

Scality’s open source multi-cloud framework, Zenko !, enables applications to transpar-
ently store and access data on multiple public and private cloud storage systems using
a single storage interface. Applications can use Zenko to access multiple cloud storage
systems, including cloud services such as Microsoft Azure Blob Storage, Amazon S3
and Google Cloud, as well as private on-premise storage systems, using an Amazon S3
compatible API.

The focus of this use case is Zenko’s capability to support federated metadata search
across multiple cloud namespaces. This enables applications to retrieve data by perform-
ing queries on metadata attributes, independent of the data location.

We consider a system model composed of a small set of geo-distributed data centers,
and a large set of client devices. Some of the data centers fully or partially replicate data,
representing geo-replicated cloud storage systems, while others store disjoint datasets,
representing different clouds storage systems (ex. DC1 & DC2 = AWS S3, DC3 & DC4
= Microsoft Azure). An instance of Zenko is deployed on one of those data centers.

Clients perform reads and writes using the S3 API either through Zenko, which then
forwards operations to the appropriate clouds (in-band operations), or by communicat-
ing directly with a backend cloud storage service (out-of-band operations). Clients can
perform metadata search queries through Zenko using an SQL-like interface.

In order to provide metadata search, Zenko captures and stores object metadata at-
tributes in a database. This database is replicated within a data center for fault-tolerance.
The current implementation of Zenko uses MongoDB as this metadata store. Metadata
attributes are stored in MongoDB as JSON objects and Zenko takes advantage of Mon-
goDB’s indexing and search capabilities to support metadata search. For in-band write
operations, metadata attributes are captured and stored in the metadata store. For out-of-
band write operations, metadata attributes are eventually propagated to Zenko’s metadata
database using event notification mechanisms provided by the cloud services.

The current implementation provides the desired functionality, but has the limitation
of assuming that most user operations are performed through Zenko, and are thus local to
the data center where Zenko is deployed. However, for out-of-band write operations, the

"https://www.zenko.io/
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Figure 1.1: Deployment scenarios for Zenko and pre-indexing.

corresponding updates to metadata attributes need to be propagated to Zenko. This leads
to high network usage in the case of write-heavy workloads and potentially stale search
results, as write operation are only eventually delivered to Zenko.

In addition to the difference between in- and out-of-band updates, cloud applications
using Zenko have varying characteristics and requirements. For example, different appli-
cations may have write- or search-dominated workloads, some may require low search
latency while others always consistent search results. Addressing these needs requires a
flexible design that can make performance trade-offs.

This use case aims at introducing a new geo-distributed metadata search design to
improve the system’s flexibility. The key insight is to allow flexible placement of state
(indexes, caches) and computations across a geo-distributed system, instead of on a sin-
gle data center. Different state placement schemes, for example having a geo-distributed
index with partial indexes placed closer to the backend storage systems or closer to the
clients at the edge, and the resulting index maintenance and query processing communi-
cation schemes, can express different points in the design space of the problem of dis-
tributed query processing, allowing the search system to adjust to various application
requirements.

1.1 Architecture

For the formal description of this use cases, we consider two different scenarios.

In the first scenario (Figure 1.1 on the left) all traffic goes through the Zenko system,
which is deployed in one data center. In this scenario, we have full control over the data
and could therefore offer any consistency level to client applications.

In the second scenario (Figure 1.1 on the right), there are applications communicating
directly with the cloud systems. Here, Zenko is used to provide additional functionality
not offered by all cloud providers. With this setup, we depend on triggers offered by the
cloud providers. When data changes in a cloud, Zenko is (eventually) notified about the
change and we can update the Indexes. Because triggers are asynchronous, this scenario
limits what consistency guarantees we can provide at the Zenko interface. However, this
scenario is relevant in practice as it allows to colocate applications in the same cloud as the
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// store an object
void putObject(ObjectKey key, Binary data, ObjectMetadata metadata)

// delete an object
void deleteObject(ObjectKey key)

/I get data and metadata for an object
ObjectWithMetadata getObject(ObjectKey key)

/I get all metadata for an object
ObjectMetadata getObjectMetadata(ObjectKey key)

// attach metadata to an object
void putObjectMetadata(ObjectKey key, MetadataKey m, Binary data)

// delete metadata from an object
void deleteObjectMetadata(ObjectKey key, MetadataKey m)

// Search for objects matching the given conditions
/I A condition has a metadata key and a range of values to include
Set<ObjectKey> search(List<Condition> conditions)

Figure 1.2: API provided by the indexing system.

corresponding storage. Moreover, some customers have legacy applications, that directly
work with a cloud and are not yet connected to Zenko.

1.2 API

Applications communicate with the Zenko Multi-cloud provider using an API similar to
AWS S3. For the formal model we only consider a subset of the provided functionality,
which is related to indexing data. Figure 1.2 shows the API we assume for our model.

The system stores some binary data together with its metadata under an ObjectKey.
The metadata is a mapping from MetadataKeys to binary data. Data can be retrieved using
the ObjectKey or a search query. We represent a query by a list of conditions, where each
condition consists of a MetadataKey and a minimal and maximal value to include in the
result. We use the lexicographic ordering on the binary values here. If no condition is
given, the search function will return all object keys. If more conditions is given, search
will return only the keys that match all conditions.

1.3 Specification

We begin by describing the state of the index based on the invocations of the API (see
1.2). Calls to the API can occur on different pre-computation nodes and are not executed
with strong consistency (i.e. with a total order). To specify the application in this setting,
we use notations similar to the ones used for the LightKone programming model.

We assume that all calls from the same app to the same node are ordered sequentially
and that all calls are ordered in a partial order vis. We say that a call is visible to another
call, if the latter observes all writes done by the first. Moreover, we assume that there is

LightKone D2.2(v2.0), January 15, 2019, Page 23



CHAPTER 4. SCALITY

a total order ar on all calls, which is an extension of vis and can be based on timestamps.
The semantics of individual API calls will be described based on the set of past API-
invocation events E, which are visible at the time and location of the request.

The data of an object with key & is determined by the calls to putObject and deleteObject.
We first define puts(k) to be the set of putObject-events, which have not been affected by
a deleteObject-event:

puts(k) ={e € E | op(e) = putObject(k,_,_) A (Ve' € E. op(e') = deleteObject(k) — €' <is e)}

The definition of puts describes a delete-wins semantics, where a delete-event wins
over a concurrent put-event. For concurrent put-events, we use the last-writer-wins pol-
icy, which we formalize using the arbitration relation. The following function data(k)
describes what data is stored under key k:

1 if puts(k) =0
d (maxy-(puts(k))  otherwise

data(k) = {

where d(e) = x, if op(e) = putObject(_, x, )

Similarly, we can define the state of the metadata for an object with key k and metadata-
key m. Again, we specify that deletes win over concurrent updates. We introduce an
auxiliary function isMetaPut in order to unify the cases where metadata is changed by
putObject and putObjectMetadata. This also helps us express, that updates on distinct
metadata keys are independent. For example, if there are two concurrent operations
putObject(k,dy,a — x1,b — y1]) and putObject(k,dp,[b — yz,c — z2]), then reading
metadata key a is guaranteed to be x1, reading ¢ will yield z; and only reading metadata
key b will yield a result that depends on timestamps.

metaPuts(k,m) = {e € E | isMetaPut(e,k,m) \ (Ve' € E. isMetaDelete(¢',k,m) — €' <,;s €)}

where isMetaPut(e,k,m) = (3M. op(e) = putObject(k,_,M) Am € dom(M))
V op(e) = putObjectMetadata(k,m, _)

isMetaDelete(e,k,m) = op(e) = deleteObject(k)
V op(e) = deleteObjectMetadata(k, m)

1 if metaPuts(k,m) =0

metadata(k,m) = _
mdy, (maxg,(metaPuts(k))) otherwise

x ,if IM. op(e) = putObject(_,x,M) NA\M[m| = x
where md,,(e) = _ _
x ,ifop(e) = putObjectMetadata(k,m,x)

Using the auxiliary functions data and metaData, we can now define the result of the
queries getObject and search. For getObject we return L, if no data exists for the object.

LightKone D2.2(v2.0), January 15, 2019, Page 24



CHAPTER 4. SCALITY

Otherwise, we return a pair consisting of the data and a map with all the metadata of the
object.

: 1 ,if data(k) = L
res(getObject(k)) = _
(data(k),(Am. metaData(k,m))) otherwise
For specifying the search query, we model the conditions as triples (m,,h), where m
is a metadata key, [ is the lowest value to include and 4 is the highest value. The query
search then returns the set of all keys, matching all of the given conditions.

res(search(C)) = {k. ¥ (m,l,h) € C. metaData(k,m) # L Nl < metaData(k,m) < h}

(a) Consistency levels

The specification above allow different levels of consistency, since we did not restrict
the visibility relation. In fact, we plan to deploy our solution in different scenarios that
require and/or allow for different consistency levels. In this document, we consider three
scenarios:

Scenario 1: Eventual consistency When supporting legacy applications, there might
be updates that directly write to an underlying cloud storage, without going through
Zenko. In that case, we have to rely on trigger notifications from cloud providers,
which typically only provide eventual delivery guarantees. Therefore, we can only
provide eventual consistency in the general case. We could provide additional guar-
antees for the updates that are issued via Zenko, but this would constraint the design
space too much.

Therefore, we do not formally restrict vis for this scenario. We merely require a
best-effort approach — the system should be built to reduce the number of events
that are not visible when performing a query.

Scenario 2: Transactional causal+ consistency If we want to allow requests to be
performed at different data centers, coordination might be too expensive. Then the
strongest suitable consistency model is transactional causal+ consistency, which we
choose here. This model imposes three restrictions on the visibility relation:

1. Causal consistency: vis is transitive.

2. Session guarantees: All operations performed on the same connection are to-
tally ordered by the session order (so). Visibility should include this relation:
€] <50 €2 —> €] <yjs €2

3. Transactional guarantees: If operations are performed in the context of a trans-
action, we want to guarantee atomic visibility: For events el,e’l,ez,e’z eFE
with 7x(e;) = tx(e]) = tx; and tx(ep) = tx(e) = txp # tx; we have e; <,s
ey > €} <yis €h.
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Scenario 3: Strong consistency If all requests are made through a single Zenko in-
stance, we can coordinate all requests within this instance and use consensus to
enforce a total order on the requests. In this case, vis must be a total order and
whenever a request e returns before another request e, starts it must hold that
€1 <vis €2.

(b) Invariants

In Deliverable 2.1 we proposed the following two invariants for the system:

1. If a condition holds for an object, then an index lookup for this condition should
contain the object as part of the results.

2. If an object is contained in the results of an index lookup for a given condition, then
the condition holds for this object.

Both conditions are now precisely specified by the equation for res(search(C)), which
uniquely determines the result of a search based on the given context. In Deliverable 2.1
we allowed (temporary) violations of the invariants. This is covered by the different
consistency scenarios described here. A search must always return a correct result with
respect to the current visibility of operations, but consistency scenarios 1 and 2 allow
operations to be delayed and only become visible at a later time.

1.4 Discussion

We have specified only a subset of the functionality. There are some minor omissions and
simplifications regarding the API: Not all options and convenience methods are supported
and we did not include support for namespaces in our API. The more important omissions
from our model are access control and versioning.

Access control on the database level is typically handled at the granularity of name
spaces or on the whole database level. Access control on single objects and metadata
entries is usually not handled at the database level and therefore is orthogonal to the
specification we gave here. Instead, access control at the object level is typically handled
at the application side, for which we can leverage techniques developed as part of work
package 6.

Versioning in the context of Zenko and S3 is mainly used to avoid data loss, by giving
clients the chance to recover older versions of an object. It would be possible to include
version information in search results, so that fetching the data for a key returned by a
search would be guaranteed to return matching results. However, it is still unclear if this
is a desirable feature, so we did not include it in the specification.
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1 The RFID-powered conveyor — overview

This use-case targets a typical conveyor belt that moves products being manufactured,
uniquely identified with an RFID tag used for identification and to store some manufac-
turing state. Products are moved from station to station according to a tailored production
plan; each station modifies the products, whenever applicable, further evolving the state
of their production plan.

Embedded nodes are placed at key positions in the conveyor belt, interconnected in
a mesh network, responsible for interacting with (1) the RFID tags, (2) the conveyor (to
route the objects), and (3) with the processing stations (to instruct them what to do).
We assume that the mesh network connecting these nodes is fast enough to share tag
information, but that the network may have partitions, and temporary reconfigurations of
nodes may induce slowdowns in the communication.

A concrete scenario is depicted in Fig. 1.1. In this example new objects arrive from
the bottom left corner and are being routed between stations to evolve in their production
plan, leaving from the top-right corner when done. The full construction plan and its
progress is stored in the RFID-tag, and at each decision point (before branching or before
entering a station), the corresponding node needs to access this plan and act accordingly.
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Figure 1.1: Scenario of a conveyor belt. Green arrows denote directions of the conveyor
belt, red arrows are communication points between nodes and the RFID tags, and blue
arrows capture interactions with the stations.
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Our contribution

The key problem we address is the slow speed to write and read these tags, requiring the
objects to stop at each decision point to be read before proceeding. A common solution
is to move the plan and status from the tag to the meshed network, using the tag solely as
an identifier. The key disadvantage of this approach is the intolerance to network splits,
and the possible dependency upon a centralised server to collect all data — a single point
of failure.

We propose a hybrid approach where the plan and status of each object are kept both at
the tag and at the mesh network of nodes. Furthermore, we avoid relying on a centralised
server by replicating this information among the nodes. We validate our choice by for-
malising a concrete approach to manage different versions of the product states, shared
among the RFID tags and the network of nodes. This formalisation uses timed automata,
providing insights regarding the time overhead that different design decisions can incur.

2 Distributed state over tags and nodes

This section starts by clarifying the assumptions and challenges of this use-case (Sec-
tion 2.1), followed by an informal description of how the information is stored and syn-
chronised among RFID tags (Section 2.2) and the mesh of distributed nodes (Section 2.3).

2.1 The distributed challenges

We identify four different situations that may occur in our system.

Tag as backup — node has the latest information. This is expected when the network is
fully functioning, not partitioned, and data flows faster than physical objects. This
means that each tag does not need to be read, and only needs to be fully written at
the exit point (so-called critical write, possibly requiring the object to stop); in the
rest of the system it is enough to be partially written or not written at all.

Tag as fresh sources — tag is the source of information. This is expected when unknown
objects are detected, either because they are new, or because they come from a
completely disconnected source, or because they were manually modified. Hence,
at decision points the node may need to read all or part of the tag to be able to act
accordingly — waiting for the network will not help.

Tag as faster source — resulting from network delays. This is expected when nodes are
busy with other tasks other than routing, when nodes are being reconfigured, or
when data needs to cross network partitions using slower mechanisms. As above, at
decision points the node may need to either read the tag, or to wait for the network.
We also assume that data in the tag may be dirty in these cases, i.e., only partially
written — hence the node must wait for the network information.

Concurrent operations — when a node wants to write information on a more recent tag,
even before its newer version is known (either via the network or the tag). This can
happen in situations where the tag is faster than the network, the desired section
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is still being written (dirty), but the node still wants to modify it; for example, to
append a timestamp logging its passage. A naive approach would require stopping
the conveyor and wait for the network update before attempting to write.

This work addresses the three top situations, leaving the efficient manipulation of
concurrent operations for future work. Our approach is to structure the RFID memory to
include version numbers of different sections of the memory, and the degree of confidence
over the stored data.

2.2 The tag structure

Each tag contains a unique ID and around 2KB of storage, subdivided into blocks of 8
bytes each that define the granularity of reading and writing to the tag. l.e., if a writing
operation fails, only the block being written is affected. In a typical scenario, a sensor can
read or write 2 to 5 blocks of bytes without requiring the conveyor to stop, depending on
the speed of the conveyor. We add additional structure by grouping sequences of blocks
into sections. Each section consists of:

e Version number — counter incremented every time the section is updated;

e Dirty bit — set to true if any of its inner blocks started to be overridden but has not
finished the process;

e Blocks — sequence of blocks of bytes with the actual data;

The tag memory is subdivided into sequences of sections, uniquely identified by their
order number. We call section header to the version number and the dirty bit, and we call
tag header to the union of all section headers and the tag identifier. This model will be
further simplified to facilitate verification, explained after introducing Timed Automata.

2.3 Replicas of the tag structure at the nodes

Each node contains a local replica of different tags, where sections may have higher or
lower versions than the tag. This replica is enriched with meta-information regarding
what sections need to be read or written. More concretely, each node contains, for each
tag, a list of contiguous sections, each consisting of the following:

e Version of the section;

e Data, as a list of blocks;

e To-write labels to blocks that are pending to be written;
e To-verify labels to blocks that are pending to be verified;

Once a tag enters the range of a node, this node starts by reading a single block with
its tag header, followed by possible reads or writes based on information from the net-
work. These read or write operations may be interrupted and continued by another node,
who will get notified over the network about unfinished operations. However, reading or

LightKone D2.2(v2.0), January 15, 2019, Page 29



CHAPTER 5. STRITZINGER

writing may be critical — for example, a section may be needed in order to decide how
to proceed (critical read), or the node may be the last one interacting with the tag before
being dispatched (critical write). We make this more precise, distinguishing 4 different
situations when a conveyor may need to stop if certain operations are not yet finished.

1. Critical read — when a section of the tag is needed before proceeding and the phys-
ical tag refers to a more recent information than the node; for example, when key
data is needed to make a decision;

2. Critical write — when a tag is about to leave the network partition, and it is not up
to date with the node information yet.

3. Read before write — when new information needs to be added to a section of the
tag, but its current version is not known to the node yet, and a more recent version
is mentioned in the physical tag.

4. Write new version number — when new information needs to be added to a section,
the tag needs to be updated to have its most recent version number before proceed-
ing, even if the section itself is not updated.

Observe that the reading operations above (1 and 3) occur only when the network
fails to be fast enough, either because of a network partition, or because one of the nodes
is misbehaving (e.g., being reconfigured). In these cases, the node may either read the
section from the tag, if the relevant section has been successfully written and verified, or
it may wait for a network update.

2.4 Optimisations

The proposed model can be further optimised on a scenario basis. For example, one may
vary the size of the sections. Smaller (and more) sections will mean finer granularity
to specify more precisely what is critical; potentially allowing only a small number of
blocks to be read before proceeding. Less (and larger) sections will mean less version
numbers, hence a smaller header and possibly less time spent before starting to read or
write relevant data. Based on the scenario, different sections can have different sizes, and
more complex approaches involving dynamically changing the sizes of sections could be
advantageous.

The size of the blocks, unlike the size of sections, are predefined by the manufacturers
of RFID tags and readers and cannot be fine-tuned on a per-scenario basis. Other opti-
mizations can also be made, which we leave for future work. For example, the structure
of the header could be compressed when assuming the range of version numbers is small,
or if the number of dirty bits set to true is mostly kept very small, or if certain sections are
rarely accessed (and may require the read of more than a single header block).

Another interesting direction of future optimisations, aligned with Lightkone, is to
follow the same ideas behind eventually consistent mechanisms, by assuming that certain

'Tn practice it is not always possible to stop the conveyor; the implications on the formal model are left
for future work.
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sections have a more restricted behaviour or require fewer consistency guarantees. For ex-
ample, if a given section is used only for keeping a write-only log of events, represented as
a set of timestamp-action pairs, then a node may update its version even without knowing
in advance its previous version (avoiding the stopping case (4) from Section 2.3).

3 Formalisation using Timed Automata in UPPAAL

Recall the notion of Timed Automata and how to analyse systems in UPPAAL (Section 5).
This section provides the formalisation using timed automata for a simplified scenario,
using a network of communicating automata consisting of:

e Tag — one automaton for each product with a tag, describing the possible paths that
a product may take between nodes, and the distance between them;

e Node — one automaton for each node, interacting with the Tag automata to sim-
ulate reading and writing of blocks, describing both the time needed to perform
operations and the time a tag stays in the proximity of a node;

e Cache - one automaton also for each node, to encapsulate the behaviour regarding
the distributed cache, i.e., how to broadcast updates from one node to all neighbours
from all network partitions.

These automata synchronise via channel synchronisation, but the content of the tags
(both in the physical tag and their replicas in the nodes) and some configurations are
stored in shared data structures. The channel-based synchronisation controls the access to
these data structures.

The rest of this section analyses a specific scenario in detail. It starts by presenting
the configuration parameters of our scenario, followed by the definition of each of the au-
tomata, and wraps up with a set of properties that can be verified using this formalisation.

3.1 General configurations

Global parameters and variables are described in a C-like language, including: constants
used as parameters that configure the scenario, channels used to synchronise the different
automata, dedicated data types, and variables that can be read or modified by any of the
automata — used to share more complex data structures. We now describe the values used
to model our concrete scenario; by choosing variations of some of these constants one
quickly understands the impact such choices have.

e General parameters: Number of Tag automata (T =2), of node and associated
Cache automata (N = 6), of sections in each tag (S = 2), and speed of the conveyor
belt (Speed = 1). The speed is used to define bounds on the expected communica-
tion time between the tag and the nodes (19/Speed < TCom < 21/Speed) and on the
time to write or read a block (2/Speed < TOp < 4/Speed). The time to send over a
network partition is bounded by 450 < TLag < 550.
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Figure 3.1: Automata of a Tag automaton with ID tid.

Channels: For every Tag t, Node n, and Cache c arrvy_,, is a channel from t to n,
leave, ,; from n to t, tagUpd;_,. from t to c, and netUpd. from c to its associated
Node. The arrv channels are performed as soon as possible (called urgent channels
in Uppaal), and the channels tagUpd is not restricted to binary synchronisations,
allowing any send to be received by exactly the automata ready to receive it (even
if none — known as broadcast channel in Uppaal).

Data types: Structures to represent sections of the physical tags, consisting of a
version number, a data value (integer), and a boolean dirty bit; and to represent
the node replicas of these sections, consisting of a version number, a data value, a
number of pending blocks to be written (toWrite), and a number of pending blocks
to verify (toVerify).

Initial tags: Our scenario has 2 tags, each with 2 sections. For simplicity, all are
initially on version 5 and with non-corrupted data (i.e., the dirty bits are set to false).

Node parameters and initialisation: Each node has a different view of the 2 Tags.
Initially, all Nodes have the 1 section of the 1% tag on version 6 with 2 pending
writes and 1 pending read, and the 2" section on version 4. The exception is node 1
— its 2" section of the 1% tag is already up to date on version 5. The second tag is
assumed to be in an older version for all nodes.

Furthermore, Node 0 has a critical section: the 2™ section of the 2™ tag; Node 5
is marked as an exit node, which means it will have to write all pending data; and
every node will try to write one block into the 1 section of the 1% tag, except for
node 0 which will try to write 2 blocks to the same section.

e Network partitions: The network is partitioned into two parts, the 1% consisting of
the nodes 0,1,2,3, and the 2™ of the Nodes 4 and 5.

3.2 Tag Automata

We use one Tag automaton for each of the two products with an RFID tag in the conveyor.
The automaton for each of these is depicted in Fig. 3.1. This automaton describes the
path and distance that the product has to perform. After it passes by node 0 it can either
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Figure 3.2: Automata of a Node automaton with ID nid.

go to nodes 1, 2, 4, and 5 (by this order), or go to nodes 3, 4, and 5. The time constraints
capture the time spend while travelling, which depend on the distances between stations,
explicitly defined by setting the variable dist. For example, when leaving location n0 the
product can transition to location mv01, setting dist to 40. There it will stay for at least 40
time units, after which the transition arrvy;q-,4 (Written arrv[tid|[1]) becomes available.
Note that this transition is urgent, meaning that it has to be performed as soon as both the
Tag and the Node are ready.

3.3 Node Automata

The automata for nodes describes their interactions with tags, and the time spent during
these interactions (Fig. 3.2). Each of the 5 Node automata can either be waiting, until it
receives an arrv message, or it can be interacting with a tag, until it allows it to leave by
sending it a leave message (and immediately broadcasting updates about the tag to the
other nodes).

In this specification, the node has the responsibility to control the time the tag stays
close to the node. In a traditional run, the tag will leave after some time between TCom1
and TCom2, which is the expected time the tag will stay when passing by the node without
stopping. In exceptional cases the tag may have to stop, which can only happen at the
locations coloured in black. The 3 bottom black locations correspond to: (1) when the
node reads the header (with the tag ID and the meta-data about the sections), (2) when it
is reading critical sections with essential information to decide what to do next, and (3)
when it is updating the header because some sections will update their version numbers.
The three top black locations correspond to when the node needs to wait for the network
(and consequently update of the section version — nodes waitingNet and updatingVer),
and when the node is marked as an exit one and must write and verify all pending blocks
to the physical tag (node wrappingUp).

Note that variables and functions, such as tid and canReadCrit(), are specified in the
companion block of code to the automaton definition, using a variation of a subset of C.
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Figure 3.3: Automata of a Cache automaton with ID nid.

30 Tag(0).n5 Tag can reach node 5.
A0exists(n : NodelD)
Node(n).waitingNet The location waitingNet is reachable for some node.

AQexists(nl,n2 : NodelD)
Cache(nl).sending and

Cache(n2).sending and More than one cache can be sending data at the same

time.
nl!=n2
30 !done and(total > 205) It can take up to 205 time units.
3ddone and(total < 175) It can finish in 175 time units.

vO!done imply (total < 205) It cannot take more than 205 time units.
vVOdone imply (total > 175) It cannot finish in less than 175 time units.

VO (deadlock imply done) It can deadlock only when both tags are leaving.
VO!(Tag(0).nl and Tag(1).nI) Only one tag can be in node 1 at a time.

Table 3.1: Properties verified by UPPAAL for our proposed scenario, where done is a
shorthand for Tag(0).leaving and Tag(1).leaving.

3.4 Cache Automata

Each node has an associated Cache automaton, depicted in Fig. 3.3, describing the prop-
agation of tag-related information among the nodes. Each of these Caches interacts with
its associated node, receiving requests to broadcast updated information via the tagUpd
channels, and notifies remote network partitions when updating their information.

The actual propagation of data is realised by modifying a global structure at controlled
moments of time, using the functions updPart (for an instantaneous update of nodes in
the current partition) and updOtherPart (to update nodes in remote partitions). Internally
it manages a queue of tags pending to be delivered to remote partitions, by specifying that
each tag in this queue takes between TLag1 and TLag?2 to be send.

3.5 Verification

In Table 3.1 we list some useful properties of this scenario that we can verify using UP-
PAAL [7], where the macro done means that both tags left the conveyor (independently
if the distributed cache is stable).

These properties show, for example, that both tags can be completed in somewhere
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between 175 and 205 time units, depending on the non-deterministic choices. These
choices include, going to node 1 or 3 after leaving node 0, taking between TCom1 and
TCom?2 time at a given node, or succeeding to write or fail when the time to leave a node
coincides with the time to finish writing the block.

When experimenting with different values of Speed, TCom, TOp, TLag, or even when
changing the topology of the 7ag automaton, one can have a quick understanding of the
temporal implications. Consider, for example, a scenario where TCom is exactly 19 and
TLag is exactly when the time to perform an operation is exactly 2 or exactly 3, the quick-
est time to be done is the same: 175 time units. When increasing this value to perform an
operation becomes 4, the quickest time to be done becomes 475 (2.7 times more). These
reflects the fact that, in the best case, the conveyor can have the same amount of stops
when TOp is 2 or 3, but it will incur extra stopping time when TOp is larger than 3.
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1 Use Case: Self-sufficient precision agriculture manage-
ment for Irrigation

1.1 The story

On a very warm day in the Mediterranean summer, farmer Manolis has to irrigate his
citrus fields using the water from his well. Last summer Manolis installed Subsurface
Drip Irrigation in his fields. He wakes up very early in the morning to be in the field
and start pumping water. This way he has enough water to irrigate his fields before his
neighbors, who are also pumping water, drain the underground water supplies.

The heat period this summer is longer than usual, so Manolis has to irrigate his fields
very often. Unfortunately, he doesn’t have an accurate indication of the moisture lev-
els in the ground throughout his fields. Being afraid of loosing part of the production,
he irrigates his fields every 7 to 8 days. One day, Manolis visits his local consultant
(agronomist) in order to discuss and plan the production. While discussing, Manolis ex-
plained the problems, worries and difficulties he is dealing with regarding the irrigation
of his fields. His agronomist then suggested to install the LightKone Self Sufficient Pre-
cision Agriculture module. This very unexpensive and easy to install technical solution
will help him to better plan his irrigation and will therefore save time and money. Manolis
will have more freedom, save electricity, and produce higher quality products.

1.2 Scientific Context of the Use Case

We present a zero-touch configuration and autonomous management capable sensor array
for precision agriculture with actuators to achieve management goals for irrigation. We
apply this use case to irrigation management in the Subsurface Drip Irrigation method.
(citrus trees cultivation — but can be applied in every farming activity, indoor as well as
outdoor).

Goal: the core management ability must be completely autonomous (no need for PC
or cloud control) and as low-cost as possible (again, no need for PC or cloud connectivity,
which can be expensive), and for this it should run on the sensor array itself. Additional
management capabilities can be added, which will cost extra, but they are not essential
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for the correct operation of the system.

Requirements for the management software. The basic management should be
done by the sensor array itself. Higher-level management goals can be added by external
systems, such as PCs or cloud tools, but such external systems cannot be guaranteed
to be connected to the sensor array. Also, we would like the system to be as low-cost
as possible: the most essential management should be done on the sensor array itself,
without any external costs. This gives modularity for the farmer: he pays only for what
he needs, and Internet connectivity is not needed for basic management abilities.

Requirements on the sensor array. In order to achieve this, the requirements on the
sensor array are that there should be (1) basic computation ability in the sensor nodes,
and (2) basic communication ability between sensor nodes (for example, Wifi or Zigbee),
with normal reliability of these nodes as provided by off-the-shelf hardware.

Given these requirements, the software we develop using LightKone technology should
be able to perform reliable basic management (24/7) despite problems in the sensor array
(nodes going down, communication being unreliable).

(a) LightKone Innovation

We will use LightKone technology to provide reliable computation and communication
ability despite unreliable nodes and communication. We will present a proof of concept
using Lasp-on-GRiSP and Yggdrasil. Lasp provides a reliable replicated key/value store
that runs with very little computational resources, on top of a communication layer, Par-
tisan, that ensures reliable communication despite highly unreliable connectivity (using
hybrid gossip). Basic connectivity is provided by Y ggdrasil underneath Partisan. We will
extend Lasp with a simple task model that stores the management software in the Lasp
store itself (which is possible because of higher-order nature of Erlang), and performs
periodic computations, storing results in the Lasp store. GRiSP provides native Erlang
functionality running with low power, with basic processor power and memory and wire-
less connectivity. GRiSP also provides Pmod sensor interfacing to provide the sensor and
actuator capabilities.

GRiSP nodes can be powered by solar batteries. 100% uptime is not required because
of the Lasp redundancy. Occasional problems in individual nodes are solvable by periodic
reboot of individual nodes. This will not hinder overall system operation because Lasp
replication and Partisan hybrid gossip are designed to survive such problems.

Management policy control is provided by a connection to the sensor array, either by
PC or cloud, which the farmer can do at any time. This connection does not need to be
continuous or reliable. The management will continue to work even if the connection is
not established for several days or more.

1.3 Description

Until now: The water is pumped out from the well (or other water source) and transmitted
to the polymer tubes. The water usually is used to irrigate multiple fields. However, every
field has different characteristics (soil, area, etc.) and the irrigation should be adapted
taking account these parameters. For example, other piece of land needs more water and
another piece of land needs less water. In order to avoid under-watering, the farmers
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Well and Pump

Figure 1.1: Irrigation plan example.

usually irrigate more times than necessary. Problem: Waste of water, waste of energy
(electricity for the pump), drainage problem (since many farmers irrigate at the same time
and the water in the underground water dump is not enough for everyone). In the image
1.1 a typical irrigation scenario is depicted. The polygons in the red line are the fields, the
red pin is the well and pump that irrigates the indicated fields, and the yellow pins are the
neighboring wells. The irrigation procedure is taking placing following only empirical
and observation rules. E.g. we irrigate for 2 hours and then we repeat every 10 days in the
summer period. Sometimes either the citrus trees need more water because of extended
high temperatures or less water due to lower temperatures.

In general, one of the main drawbacks of the SDI systems is that water applications
may be largely unseen, and it is more difficult to evaluate system operation and water
application uniformity. System mismanagement can lead to under-irrigation, less crop
yield, quality reductions, and over-irrigation. The latter may result, among others, in poor
soil aeration and deep percolation problems.

Using the self-sufficient management system, the field could be divided into clusters
(e.g. as installed the polymer tubes) and accordingly the LightKone self-sufficient nodes
will be distributed, containing the management unit, sensors and actuators. This way
the farmer could divide his fields into zones, and when a zone is sufficiently irrigated
(retrieved value from the sensors), the actuators will stop the water flow into specific parts
of the tubes. The remaining part of the field that still needs water will still be irrigated.

The image 1.2 presents a potential installation of the nodes and gateway in the field.
The blue box marked with the letter G is going to be the gateway and through it the farmer
or the agronomist could occasionally provide the management rules through a PC. This is
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Figure 1.2: Potential installation of the self-sufficient irrigation system

not connected to the internet/cloud. The black dash lines are the polymer tubes installed
in the field and on top of them, close to each tree, there is the drip station. The blue circles
are the LightKone nodes including sensors and actuators controlling the flow of the water.
(This placement is only made for demonstration purposes. The actual placement will be
taking place according to the specific requirements of every field and cultivation). In that
way the field is divided into clusters where its cluster can be isolated from the others in
terms of water flow.

The self-sufficient system could in a low-cost manner allow the farmer seamlessly to
perform irrigation as needed by receiving values from sensors in the soil and controlling
actuators to start/stop the irrigation procedure to specific rows of the tubes and accordingly
part/cluster of the field.

Using the above installation and the farmer could manage the fertilizer flow into his
field in the same way.

Another benefit of the self-sufficient system is that it could also act as a frost protection
method in the winter. A common problem in the winter time for the cultivation of citrus
farms is the frost. The anti-frost protection is very expensive, and the farmers cannot
afford to install it an every piece of field. In the winter time when the frost occurs (0 to
-3) it affects the production. A method to prevent this is to turn on the irrigation system.

In traditional implementations there is only one central thermostat, usually in the
pumping station. Since the pumping station is away from the fields it does not give ac-
curate situation of the status. (The temperature in the pumping station could be over 0
Celsius, however in specific part of the farm could be below 0 — depending on the wind,
etc.). Using the self-sufficient system, we can have the temperature values from the sen-
sors on the spot and take the decision to activate the irrigation.

(a) Actors

e LK Node. Responsible for local management and decision making, data aggrega-
tion, communication among LK nodes and to the LK gateway.

e LK gateway. Responsible to updating the management policy to LK nodes and
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Figure 1.3: Use case actors diagram for Self-sufficient agriculture management use case

eventually controlling the main water pump.

e Farmer/agronomist. Defines the policy and updates it through a PC to the LK
gateway.

In the image 1.3 you can see the related use case diagram involving the above actors.

(b) Requirements

In the table 1.1 the Use Case requirements and their priority are summarized.

1.4 Return of the Investment

Pain reliefs: LightKone Self sufficient precision agriculture management for irrigation
reduces the cost of energy in the water pumping, reduces the stress of the farmer to
start/stop the irrigation system (save the production), saves the crop production (increases
the profit), improves the quality of the crops, reduces the farming costs (fertilizers, extra
manpower, maintenance costs), reduces the environmental footprint.

In the following lines we are providing an estimation of a potential scenario involving
financial figures in order to present a level of measurement, among the others, about the
cost savings that such an innovative solution can offer.
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Table 1.1: Use Case requirements

Id Requirements Rationale Priority

The farmer should be able to install the system, remove/add nodes on
his farm by himself without providing any programming or network
PA1 | Zero touch configuration setup skills. Every farmer should decide by himself the deployment | High
of the nodes and therefore his own installation depending on his
specific requirements.

In presence of certain conditions, e.g. the soil moisture level reach
PA2 | Actuation above a certain threshold, the actuator, such as solenoid valves, High
should close and stop the water flow.

The core management ability must be completely autonomous

PA3 | Autonomous core management .. .
and for this it must run on the sensor array itself.

High

Additional higher-level management abilities can be added
PA4 | Extendibility as an extra service in a more scalable solution, by external systems Low
e.g. using the cloud and internet connection.

Management policy control is provided by a connection to the
PAS Policy Control sensor array, either by PC or cloud, which the farmer can do at High
any time. This connection does not need to be continuous or reliable.

The policy must continue to work even if the connection

PA6 | One-time management polic .
& policy is not done for several days or more.

High

No internet connectivity is necessary for the sensor array to
operate. The basic management of the sensor array should
take place even when some nodes going down or even
when the communication gets unreliable.

PA7 | Autonomous operation High

Data filtering threshold to detect anomaly of sensors.

If the sensed data is out of range of acceptable values,
then it will be discarded. The mean value of the samples
will be accepted as an input for actuation decision.

PA8 | Periodic computation of the rules High

Communicating end points should be able to verify
PA9 | Source Integrity the identities of each other to ensure that they are High
communicating with the entities who they claim to be.

A sensor node can store a data packet and replay it at
PA10 | Replay Protection later stage. The replayed packet can contain a High
typical sensor reading (e.g. a soil moisture reading).

No intermediary between a source and a destination
PA11 | Data Integrity should be able to undetectably change secret contents Low
of messages.

Messages that flow between a source and a destination
PA12 | Confidentiality could be easily intercepted by an attacker and secret Low
contents are revealed.

Use of clustering algorithms to identify homogeneous

. Medium
areas for better management of the agricultural land.

PA13 | Data clustering

. The nodes should be enabled with renewable sources .
PA14 | Autonomous power abilities . Medium
of energy (e.g. solar panels) to recharging the node battery

The farmer should be able to replace a node by

himself in case the node is damaged. Low

PA15 | Low maintenance cost
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The scenario that we will take account would be for a one season cultivation (e.g.
citrus cultivation).
In our scenario we will make the following assumptions:

e We will consider the pricing of the LightKone nodes as if they were produced in-
dustrially and not experimentally as it is now. (Certified hardware, low hardware
mass production cost). In this sense we will define an entry price per LightKone
node of 50 Euros.

e We consider that 5 nodes per acre will be installed, including the gateway.

e We will take account as a field of 10 acres. We consider that the total cost for
installing the LightKone will be 3.000 Euro (2.500 Euro hardware costs plus 500
Euro overhead costs).

e The irrigation period lasts from May to October (6 months season).

e The water costs are calculated as per hour cost (approximately 10 Euro per hour).
(this depends on the country and the water billing system, usually for agricultue
billing is per hour).

In order to calculate the cost benefit, and taking into account the benefits mentioned
above, we are following the next clues:

e The net (in the pocket) production money per acre is 700 Euro (This is a pessimistic
approach.).

e The improved production (more crops and not losing crops) by proper irrigation
could be 15% (realistically it could be more, but we are taking a neutral scenario
approach).

e We save 20 hours of water cost (per irrigation period) for a total of the 10 acres (it
could be more, but we follow the pessimistic approach).

e We estimate a cost reduction of 50 Euro per acre for other costs (fertilizers, main-
tenance, time savings, energy costs, other).

Those numbers result in earnings per acre of 140 Euro plus 200 Euro as a total for 10
acres, per season, from the water savings.

In the case of a farm of a total of 10 acres, it can be estimated that within 2 years the
farmer will have earned the investment cost in terms of money. Additionally the quality of
the land, trees and crops is improved, resulting in a higher production from year to year.

1.5 Agriculture Market Potential

In this paragraph we will succinctly present the market figures for precision agriculture
applications in the fog computing era. We will take into account the report commis-
sioned by the Openfog consortium entitled ”Size and Impact of Fog Computing Market”
(conducted by the 451 research” company at the end of 2017). Here we will present
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Figure 1.4: Size and Impact of Fog Computing Market

only specific key findings. In the vertical market analysis, we observe that the agriculture
market is one of the most promising developing markets in the fog computing paradigm.
The agriculture market is projected to reach a market share of 2,118 billion dollars out of
the 18,2 billion of the total market and is projected to be one of the five most promising
markets, as you can see in 1.4.

For further information see Open Fog Consortium Report.

1.6 State of the art

The development of Wireless Sensor Technologies applications in precision agriculture
makes it possible to increase efficiency, productivity and profitability, while minimizing
unintended impacts on wildlife and the environment in many agricultural production sys-
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tems. Efficient water management is a major concern in many crop systems. WST have
a big potential to represent the inherent soil variability present in fields with more accu-
racy than the current systems available. Thus, the benefit for the producers is a better
decision support system that allows them to maximize their productivity while saving wa-
ter. Also, WST eliminates difficulties to wire sensor stations across the field and reduces
maintenance cost. Since installation of WST is easier than existing wired solutions, sen-
sors can be more densely deployed to provide local detailed data. Instead of irrigating
an entire field in response to broad sensor data, each section could be activated based on
local sensors. Till now there exist numerous implementations of wireless sensor networks
for irrigation purposes. The majority of the implementations are using internet connec-
tivity, cloud storage, decision support systems and sophisticated GUIs. Some indicative
implementations are presented in [20], [12], [23], [17], [13], [14], [24], [10].

Furthermore, new developments using distributed computing have been released. In
[14] a precision agriculture system is presented using a distributed architecture based on
a user-centric approach. These systems, however, are also based on cloud usage and
external communication interfaces. [18].

Self-organizing network/s (SON) was promoted by the Third Generation Partnership
Project (3GPP) and Next Generation Mobile Networks (NGMN). SON has been intro-
duced since in 3GPP Release-8, Release-9 and currently included in Release-10 frame-
work as an excellent solution that promises improvements and market potential for future
wireless networks. A system which is self-organized may not have any external or central
control entity, but the controlling mechanisms are distributed and localized among the
entities within the system.

The academic literature has dedicated significant effort to SON algorithms, providing
smart solutions to optimize network operator performance, expenses and users’ experi-
ence. An extensive literature review of SONs is presented in [18] where comparative
tables of the fulfilled and upcoming challenges are presented. A long list of literature is
referred and a reference to EU projects that are working on this area is also listed.

Significant work has also been done on EU projects level. Project Figaro [2] aims to
increase water productivity in major water-demanding crops and develop a cost-effective
decision-support irrigation platform. Meanwhile, the FOODIE [1] project has put in place
a cloud-based platform to host both spatial and non-spatial agricultural data while the
10F2020 [3] project has developed new solutions to better integrate ‘Internet of Things’
(IoT) technologies into agricultural processes.

In the literature review we can hardly find a self-organizing solution with zero touch
configuration and autonomous managing , for precision agriculture purposes and more
specifically for irrigation management. It is generally agreed that sensor/actuator edge
networks are too unreliable to do their own management, so that gateway nodes (PCs) or
a cloud connection is necessary. In this use case we will test and present a platform that
increases the resilience of sensor/actuator edge networks so that they are able to reliably
execute basic management tasks directly on the edge nodes themselves.
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2 Abstract Modeling

The operation of a smart agriculture system can be modeled as a discrete sequence of
events in time. Each event occurs at a particular instance of time and marks a change of
state in the system. A state represents the system in a given moment of its evolution. Such
an evolution occurs by processing an ordered sequence of events. Additionally, each event
is tagged by a timestamp that specifies the simulated time at which it has to be processed.
In a basic scenario the events are represented by the regular data messages sent by sensor
nodes and/or actuators. An advanced model of the system could also consider events
generated by the system users, e.g. farmers, service providers, third-party developers, etc.
We will use a Discrete Event Simulation (DES) [11] approach in order to create a
representative model of the system, test it under various use-case scenarios and collect
statistical data. Such a simulation will not only support the design and implementation of
the smart agriculture system, but will also help to maintain and improve it in the future.
DES relies on several main components, namely:

e A collection of state variables that describe the state of the modeled system. The
state of the system changes whenever an event occurs.

e An ordered list of events that are processed during the system evolution. An event
is described by the time at which it occurs and its type. The time of event can also
be represented as an interval, providing a start and end time.

e A global clock that represents the current time in a simulated system. In DES the
time is not continuous, but rather it jumps over events as the simulation proceeds.
This fact allows us to run simulations much faster as compared to alternative mod-
eling techniques.

3 A Use-Case Example: Irrigation Control System

This deliverable analyses formally automated irrigation in the context of smart agriculture.
This example does not describe the autonomous management irrigation system presented
above. It is an example that has been chosen to demonstrate formalization techniques.
The goal of such system is to take control of the soil moisture at the field. A network of
distributed sensors measures the soil moisture periodically and transmit the measurements
to a central controller. This controller then processes the measurements received and acts
accordingly: powers on or off the water pump responsible for adjusting the amount of
water given to the plants.

3.1 Problem Description

The developed irrigation system has to avoid large delays to adjust the water pump, con-
firm that the water pump is always turned on when the soil is dry and the opposite — when
the soil is wet. The system needs to be autonomous and ensure stability. It relies on both
edge node and the cloud backend for a DES controller logic. The controller has to be
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Figure 3.1: The architecture of automatic irrigation system.

able to perform its function while in online (cloud processing) and offline modes (local
processing).

As shown at Figure 3.1 an irrigation control system consists of two subsystems, a
water pump and a water distribution network. The water distribution network has multiple
soil moisture level sensors distributed across the field and a pipe that connects to the
water pump. The water pump is controlled by an ON/OFF switch managed by the edge
controller. It fills the water distribution network through the water pump. The sensors
periodically measure the soil moisture and send their results to the edge controller via the
nearest Base Station (BS).

3.2 DES Model of the Irrigation System

Representation of the system in the DES formalism is the first step in the design of a
discrete event controller whose objective is to keep the soil moisture level between low
and high. We first identify the key events occurring in the system (see Figure 3.2:

e Commands to power on ("pw?0ON”) and power of ("pw?OFF”) the water pump.
e The actual start ("w?WSTART”) and stop ("w?WSTOP”) of the water flow.

e Detection of the soil moisture level to be low ("Is?L”) or high (hs?H”) and switch-
ing the pump on/off.

Figure 3.2 shows a DES model of the irrigation system. As compared to representation
of the system architecture above at Figure 3.1 we specifically focus on the water pump,
sensors and the controller.

The initial state of the system is INIT. The state of the water pump includes the vari-
able “lev”, which measures the water level and can have one of the following values:

e [ow = abnormally low moisture level,
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Figure 3.2: State trajectory of the irrigation system.

e Normal = normal moisture level,
e High = abnormally high moisture level.
The input water flow is represented by:

e Out = stopped (pump is not active, and the water is consumed or evaporates). At
Figure 3.2 it is shown as state trajectory High-Out — Normal-Out — Low-Out.

e In = flowing (pump is active and the water flows in the irrigation system). At Figure
3.2 it is shown as state trajectory Low-In — Normal-In — High-In.

With water flowing in, the state of the system transitions from Low-In to Normal-In
and to High-In moisture levels, generating corresponding sensor signals. If the water con-
tinues to flow and the moisture level goes beyond the High level, the system reaches the
Overflow state. When the water pump is not active, the water is naturally consumed by
the field plants and evaporates during the day. The state of the system transitions from
High-Out to Normal-Out and to Low-Out. These transitions will trigger the correspond-
ing sensor signals. If the pump or controller brake, the water flow will stop, and the
system will eventually reach the state Exhausted.

The input port of the pump is “pw” (power) and the output port is “w” (water). If
the water pump is turned on ( “pw”?ON), it starts pumping water through the water pipe

“w”?WSTRT). If it is turned off (“pw”?OFF), it stops pumping and the flow of water
will be stopped (“w” ?STOP).
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Consequently, the pump has four states:
e Stop = passive state,

e ON = transient, issues a start output,
e Pumping = active,

e OFF = transient, issues a stop output.

The two components, pump and irrigation system, are connected through the port “w”
(pipe). As Figure 3.2 shows, there is just one input port “pw” (power ON/OFF) and two
output ports for the high and low moisture levels.

3.3 Controlled State Trajectory

The next step is to get a global state transition diagram (GSTD) from the system repre-
sentation. Let a state s in the GSTD be (P.s, I.s) where Ps denotes a state of the water
pump and Ls a state of the irrigation system. We formulate the desired state path, denoted
K, by the constraints:

1. From any global state (x,y), the state (Stop,High-Out) will eventually be reached,
where x and y mean any state of the pump and irrigation system respectively. In
other words, an active and working irrigating system will always reach the state
when the irrigation is complete, and the pump is turned off.

2. dno x such that (x, Exhausted) or (x, Overflow). These are safety constraints.

3. Hysteresis: If (x, Normal-In) evolves to (y,Normal-In), then x and y must be differ-
ent.

Now we can extract a controlled state trajectory from GSTD and the control objec-
tives. Figure 3.3 features the desired state trajectory of the irrigation system that was built
by combining the components showed at Figure 3.2. Initially, the stated is changed to
(Stop, Low-Out) after a few internal transitions. Then the pump should be ON, which is
followed by a concurrent event “w”#WSTRT (“w”!WSTRT and "w“?WSTRT).

If the moisture level reaches the high level, the pump should be OFF and water flow
should be stopped. Naturally, when the moisture level drops again, the pump should be
turned ON again and the process repeats. This cycle of state paths satisfies the three
previous objectives.

The next step is to check the controllability of the desired state path. The system must
withstand sensor failures and, as a result, avoid reaching overflow or exhausted states.
The system controller therefore needs to control the states trajectory transition carefully
to avoid the corner cases. Since every successive pair of states is connected by an internal
transition with unconditional input, the irrigation system should be strongly controllable.
To check this, consider Figure 3.4 in which the transition marked with 1 occurs from
(Stop, High-Out) to (Stop, Overflow). This is an internal transition which results from the
remaining water in the pipe continuing to flow into the system after the pump is turned
off. This transition will occur if the moisture sensor is broken or disconnected. However,
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Figure 3.3: Desired state trajectory of the irrigation system.

this internal transition is not on the desired path which requires (Stop,High-Out) to be
followed by (Stop, Normal-Out), i.e., for the water to start going into the soil after the
influx ceases without first overflowing. Moreover, there is no external transition that
can rectify the situation since the pump has already been turned off. A similar internal
transition, marked 2, occurs when the water is not coming to the system despite the pump
being turned back on, due to the transport delay in the pipe.

We see, that the system is in fact weakly controllable. However, it can be made
strongly controllable by utilizing the redundancy of the sensors and thus improving the
fault-tolerance of the system. Additionally, the controller should consider the time it takes
for a water to reach the sensors.

3.4 Deriving a Discrete Event Controller

At this point we have represented a system as a coupled DES, obtained the state transition
behavior and interpreted the informally stated controlled objectives as a desired path in
the state space of the resultant. This path can be strongly controllable (assuming fault-
tolerant sensor deployment) so an associated state trajectory exists. Now, we derive a
discrete event controller from the state trajectory using the inverse DES transformation.

Before the transformation, we can reduce the states of the desired state trajectory. The
left part of Figure 3.5 is obtained by state reduction from the trajectory in Figure 3.3. A
discrete event controller is obtained by inverse DES transformation of the desired reduced
state trajectory. The right part of Figure 3.5 shows the DEC after the transformation. Note
that the transformation is straightforward and intuitive.

The two components, the controller, and the irrigation system are coupled through
ports that have the same name to form a hierarchical coupled DES, shown in Figure 3.6.
The dynamics of the resultant design follow the desired state trajectory since the controller
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and the irrigation system, once started in corresponding states, maintain this correspon-

dence forever.

4 Conclusion

By representing an irrigation system as a state trajectory graph, we can verify that desired
constraints are met. This is, for instance, important to account for high sensor failure.
We can also run a DES simulation to completely explore the space of all the possible
states. This can greatly simplify system testing and evaluation, as certain system states
are hard to reach with manual testing. We also consider exploring other use cases and
different sensors in upcoming months, checking the model failure, and including state
probabilities or real time simulations.
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SysML Requirement Diagrams

In this chapter all requirements for the individual projects are summarized and visualized
in Requirement Diagrams as standardized in the Systems Modeling Language (SysML)
[21].

1 Introduction

SysML is a graphical modeling language for system engineering applications. It is a
derivation from UML 2. From SysML we use the Requirement Diagram, which helps
visualise system requirements and their relations. Here we give a short explanation of the
elements we use from it.

The only block type we use in the diagrams is ”"Requirement”. This block type has a
title and several attributes. There is a "Text” attribute which is used for further descriptions
if necessary. The “’kind” attribute can have the values “Functional”, "Performance” and
“Interface”. The attribute “verifyMethod” can also only have predefined values which
meaning is less intutive as the former attribute which are defined as follows:

“Inspection” is the nondestructive examination of a product or system using one or
more of the five senses (visual, auditory, olfactory, tactile, taste). It may include simple
physical manipulation and measurements.

”Demonstration” is the manipulation of the product or system as it is intended to be
used to verify that the results are as planned or expected.

“Test” is the verification of a product or system using a controlled and predefined
series of inputs, data, or stimuli to ensure that the product or system will produce a very
specific and predefined output as specified by the requirements.

”Analysis” is the verification of a product or system using models, calculations and
testing equipment. Analysis allows someone to make predictive statements about the
typical performance of a product or system based on the confirmed test results of a sample
set or by combining the outcome of individual tests to conclude something new about the
product or system. It is often used to predict the breaking point or failure of a product or
system by using nondestructive tests to extrapolate the failure point.

The attribute ”Status” can have the values “Proposed”, ”Approved”, "Rejected”, "De-
ferred”, "Implemented”, "Mandatory” and ”Obsolete” and is meant to track a requirement
through the project lifetime.
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There are various types of relations between requirements which are depicted as ar-
rows with labels such as a derivation 1.1, a satisfaction 1.2 and refinement 1.3. The arrow
direction for “derive” and “refine” is a bit counterintuitive, please refer to the example
figures for their precise meaning.

There can be also unlabeled dashed arrows which stand for a not further specified
dependency. Dependency means a relationship between two requirements where changes
in one of them similarly affects the other.

<<requirement>> <<requirement>>

A <~ - - - - - - - - - B

<<derive>>
ID = "REQOO01" ID = "REQ002"

Figure 1.1: The derive relationship shown here means that a requirement B is derived
from A.

<<requirement>> <<requirement>>
A <~ - - - - - = - - - - B

<<satisfy>>

ID = "REQO01" ID = "REQ002"

Figure 1.2: The satisfy relationship shown here means that the requirement or implemen-
tation B satisfies requirement A.

<<requirement>> <<requirement>>

A - - — - - - - - - B

ID = "REQ001" <<refine>> ID = "REQ002"

Figure 1.3: The refine relationship shown here means that a requirement B is a refinement
of A.

2 Requirements Analyis of Use-Cases

2.1 Requirements Analysis: UPC

Figure 2.1 depicts the requirements for the Guifi.net usecase. To get overview of the
network state, the status of the individual network nodes must be collected and stored
into a distributed database. To overcome the current shortcomings, the system shall be
adapted to the usecase of a big mesh network with unreliable links. This means load
must be distributed among monitoring servers, data must be replicated and stored in a
distributed database, failures must be detected, and the system must work without any
manual intervention. The assignment component should detect and handle inconsistencies
in the distributed database and merge them.
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2.2 Requirements Analysis: Scality

The requirements for the scality project are depicted in figure 2.2. The system should
give access to cloud storage via an S3-like API and store the metadata in a seperate and
replicated database using MongoDB. The system should be geo-distributed, scalable and
reliable towards outages. Data are immutable. Different consistency levels shall be sup-
ported. It should still be possible to write to the backend storage out-of-band.

2.3 Requirements Analysis: Stritzinger

Figure 2.3 shows the requirement analysis for the No-Stop RFID use case from Stritzinger.
We started at the toplevel requirements (depicted in pink):

e Allow concurrent writes with last writer wins semantics
e Communication with Maufacturing Procees

e Data of different RFID Tags is independent

e Localize Workpiece

e Mesh Like Network Topology

e Persistence of information

e Runs on existing RFID reader hardware

e Store Processing Information on each Workpiece

e RFID tags shall stop as little as possible

And refined and derived more detailed requirements and proposed implementation
detais from those (depicted in aquamarine).

2.4 Requirements Analysis: Gluk

In 2.4 you can see the current state of the requirement analyis for the new use case of
Gluk as described in Chapter 6 in this document. Due to time constraints we were only
able to show the toplevel requirements from the use case. During the implementation and
evaluation this diagram will be furthe refined.
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ID = "REQO01"
kind = "Functional”
verifyMethod = "Test"
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Collect Status from Nodes
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kind = "Functional"
verifyMethod = "Test" ~-<
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<<requirement>> <<requirement>> <<requirement>> <<requirement>> <<requirement>> <<requirement>> <<req
Read/Write Access Data Replication Redundancy of Monitoring Servers Load Balancing Detect Server Failures No Manual Intervention GuifiDB
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nd = "Functional

D = "REQ004"
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<<requirement>>
Distributed Database

ID = "REQ014"
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verifyMethod = "Test" \
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<<requirement>>
Write Assignment to Distributed Storage

<<requirement>>
Provide Information about available Monitoring Servers

<<requirement>>
Assignment Component reads Monitoring Assignement from Storage

<<requirement>> <<req
Provide Info about Network State and Devices Support initial Assignment

= "REQ010"

nd = "Functional
verifyMethod = "Test"
status = "Mandatory"
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kind = "Functional”
verifyMethod = "Test"
status = "Mandatory"
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verifyMethod = "Test"
status = "Mandatory"

D = "REQ017" ID = "REQ016"
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verifyMethod = "Test"
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status = "Mandatory"

s+ <<refine>> \

<<requirement>>
Aggregate or Merge Datasets
ID = "REQ013"
kind = "Functional"
verifyMethod = "Test"
status = "Mandatory"

<<requirement>>
Assignment of Nodes to Monitoring Servers
D = "REQ009"
ind = "Functional"
verifyMethod = "Test"
status = "Mandatory"

Figure 2.1: Requirement Analysis UPC Usecase
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status = "Mandatory”

Store Processing Information
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on each Workpiece

Communication with
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Allow concurrent writes
last writer wins semantics
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RFID tags sh
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“REQ020' Text = "In a production
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adaptions”
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Read /Write Access to Bytes on Tag
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kind =
status = "Mandatory”
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common API for the protocol
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= "REQ033"

kind = "Performance’
verifyMethod = "Analysis”
status = "Mandatory

unctional
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j
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'
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Mesh Like Network Topology
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Data of different RFID Tags

Text = "Network topology is a
mesh with a large graph

diameter”

D = "REQ038" ID = "REQ036"
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verifyMethod = verifyMethod =

"Demonstration”
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“Demonstration"

Text = "Some of the data
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Runs on existing RFID reader
hardware
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Figure 2.3: Requirement Analysis Stritzinger Usecase

<<requirement>>
Gossip Protocol for Anti Entropy

ID = "REQO3!
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Implement Cache Data-Structure \
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with ordering of physical trajectory v
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<<requirement>>
Distributed Key Value Storage of
cache data
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value is cache CRDT"
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APPENDIX A. SOURCE CODE

MODULE MonitoringSystem
EXTENDS Naturals, FiniteSets, TLC

The CONSTANT section defines constant parameters.

CONSTANTS
DEVICES, set of devices
SERVERS, set of servers
MinRATE, monitoring “rate” for each device
MaxCAPACITY , monitoring “capacity” for each server
MaxFAILURE, allowed server failures

ASSUME

A DEVICES #{} at least one device

A SERVERS #{} at least one server

A MINRATE >1 device’s monitoring rate is at least 1

A MAXCAPACITY >1 each server has to monitor at least a device

The number of failures, restricted by the servers monitoring capacity does not lead to an
invariant violation.
A(Cardinality ( ( SERVERS ) ) - MaxFAILURE ) * MaxCAPACITY

> (Cardinality ( ( DEVICES ) * MinRATE )

The VARIABLES section defines constant parameters.

VARIABLES
monitorisation, monitorisation relation between servers and devices
crashed, set of crashed servers

Record type describing the monitorisation of a device by a server.
Monitor = [server : SERVERS, device : DEVICES

The type-correctness invariant, indicating the possible values that can be assumed by the variables.
Variable monitorisation describes a global shared database relation is represented by a set of
records [server,device], e.g., monitorisation = {[srv1,devl],[srv2,devl], [srv3,dev2], ...}
Typelny =
A monitorisation € SUBSET Monitor
A crashed € SUBSET SERVERS

Function devices returns the devices monitored by server — srv— given a monitorisation relation
—pairs
devices(srv, pairs) = {x.device : x € {p € pairs : p.server = srv}}
Function servers returns the servers that monitor a device — sdev— given a monitorisation relation
—pairs
servers(dev, pairs) = {x.server : x € {p € pairs : p.device = dev}}
The initial predicate. Non deterministic assignment of devices to servers.
Init =
A monitorisation = CHOOSEpairs € SUBSET Monitor :
AYd € DEVICES : Cardinality(servers(d, pairs)) > MinRATE
AVs € SERVERS : Cardinality(devices(s, pairs)) < MaxCAPACITY
Acrashed = {}

A
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THE ACTIONS

The next-state action is the disjunction of the three actions revoke, assign, and crash.
revoke(srv,dvc) =
Preconditions:
A [server — srv,device — dvc| € monitorisation
A Cardinality(servers(dvc, monitorisation)) > MinRATE + 1
Update state variables with the new monitorisation pair:
A monitorisation’ = monitorisation\{[server — srv,device — dvc|}
A UNCHANGED (crashed)
assign(srv,dvc) £
Preconditions:
A srv & crashed
N [server — srv,device — dvc| ¢ monitorisation
A Cardinality(servers(dvc,monitorisation)) < MaxCAPACITY + 1
Update state variables by removing the monitorisation pair:
A monitorisation’ = monitorisation U {[server — srv,device — dvc]}
A UNCHANGED (crashed)
Action to be refined so that server failure and reassignment of its devices does not occur
simultanoeusly. This might lead to temporary invariant violation for the devices monitored
by — srv — server.
crash(srv) =
Preconditions:
A srv & crashed
A Cardinality(crashed) < MaxFAILURE
Update state variables by assigning the devices being monitored by server — srv — to other
(non-crashed) servers.
A crashed = crashed U {srv}
A LET devs = devices(srv,monitorisation)
assignment = {p € monitorisation : p.server = srv}
live & SERVERS\crashed’
reassignment = CHOOSEpairs € SUBSET[server : live,device : devs] :
AVYd € devs : Cardinality(servers(d, pairs)) > MinRATE
AVs € live : Cardinality(devices(s, monitorisation)) < MaxCAPACITY
IN monitorisation’ = (cmonitorisation\assignment ) U reassignment

Figure 1.2: TLA+ specification of module MonitoringSystem (II).
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Invariant: All devices are monitored by at least MinRATE devices.
Resilience = Vd € DEVICES :
Cardinality(servers(d,monitorisation)) > MinRATE

Invariant: The number of failures, restricted by the servers monitoring capacity allows devices to
be monitored by at least MinRATE devices.
LimitFailures =
(Cardinality(SERVERS) — MaxFAILURE) * MaxCAPACITY
> (Cardinality(DEVICES) * MinRATE

Invariant: The number of devices monitored by each servers does not exceed the allowed capacity.
LoadBalancing = Vs € SERVERS \ crashed :
Cardinality(devices(s,monitorisation)) < MaxCAPACITY

Invariant: Crashed servers do not monitor any devices.
Crashed = Vs € crashed : devices(s, monitorisation) = {}

The specification’s next-state action.
Next = 3s € SERVERS,d € DEVICES :
revoke(s,d) V crash(s)

The system invariants.
Invariants = O(Resilience \ LoadBalancing A\ LoadBalancing A Crashed)

The complete specification.
Spec &
A Init
. [N ext ] (monitorisation,crashed)
A Typelny
AlInvariants

Figure 1.3: TLA+ specification of module MonitoringSystem (I1I).
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