
Project no. 732505
Project acronym: LightKone
Project title: Lightweight computation for networks at the edge

D2.1: Informal Requirements

Deliverable no.: D2.1
Title: Informal Requirements
Due date of deliverable: September 30, 2017
Actual submission date: September 30, 2017

Lead contributor: Stritzinger
Revision: 1.0
Dissemination level: PU

Start date of project: January 1, 2017
Duration: 36 months

This project has received funding from the H2020 Programme of the European Union

LightKone Deliverable D2.1(v1.0), September 30, 2017

Ref. Ares(2017)4776403 - 30/09/2017

Revision Information:

Date Ver Change Responsible
01/06/2017 0.1 1st draft with outline and ToC Stritzinger
30/09/3017 1.0 Final version Stritzinger

Contributors:

Contributor Institution
Peter Van Roy UCL
Igor Zavalyshyn UCL
Bradley King Scality
Dimitrios Vasilas Scality
Giorgos Kostopoulos GLUK
Kostis Kounadis GLUK
Roger Pueyo UPC, Fundació Guifi.net
Felix Freitag UPC
João Neto UPC
Leandro Navarro UPC
Roc Messeguer UPC
Peer Stritzinger STRITZINGER
Adam Lindberg STRITZINGER
Stefan Timm STRITZINGER
Deepthi Akkoorath KL
Annette Bieniusa KL
Ali Shoker INESC TEC
João Leitão NOVA ID
Nuno Preguiça NOVA ID
Bernardo Ferreira NOVA ID

LightKone D2.1(v1.0), September 30, 2017, Page 2

Contents

1 Executive Summary 1

2 Introduction 3
1 Motivation for the use cases . 3
2 The importance of crosscutting topics 4
3 Requirements elicitation and the questionnaire 5

3 UPC 7
1 Coordination between servers for the Guifi.net monitoring system 7

1.1 Common background for the Guifi.net use cases 7
(a) Guifi community network environment 7
(b) Edge computing in Guifi.net 7
(c) Current monitoring system for Guifi.net nodes 8

1.2 Overview of the use case . 9
1.3 Current development . 10

(a) Conflicting operations 10
(b) Invariants that exist in the application state 10
(c) Performance results/figures 11
(d) Persistence . 11
(e) Security threats . 11
(f) Current deployment details 11

1.4 Detailed description . 11
(a) Architecture . 11
(b) Edge computing requirement 13

1.5 Data model . 13
1.6 Detailed description of the computations 14
1.7 Conflicting operations and invariants 15
1.8 Divergence and divergence control 15
1.9 Network partitions . 15
1.10 Operational requirements . 15
1.11 Security requirements . 16
1.12 Data protection requirements . 16
1.13 Implementation . 16

2 Data storage service for the Guifi.net monitoring system 16
2.1 Overview of the use case . 16
2.2 Current development . 17

(a) Conflicting operations 17

3

CONTENTS

(b) Invariants that exist in the application state 17
(c) Performance results/figures 17
(d) Persistence . 17
(e) Security threats . 17
(f) Current deployment details 17

2.3 Detailed description . 17
(a) Architecture . 18
(b) Edge computing requirement 18

2.4 Data model . 19
2.5 Detailed description of the computations 19
2.6 Conflicting operations and invariants 19
2.7 Divergence and divergence control 19
2.8 Network partitions . 19
2.9 Operational requirements . 19
2.10 Security requirements . 20
2.11 Data protection requirements . 20
2.12 Implementation . 20

3 Service provision support for the Cloudy platform 20
3.1 Overview of the use case . 20
3.2 Current development . 21

(a) Conflicting operations 21
(b) Invariants that exist in the application state 21
(c) Performance results/figures 22
(d) Persistence . 22
(e) Security threats . 22
(f) Current deployment details 22

3.3 Detailed description . 22
(a) Architecture . 23
(b) Edge computing requirement 23

3.4 Data model . 24
3.5 Detailed description of the computations 24
3.6 Conflicting operations and invariants 24
3.7 Divergence and divergence control 24
3.8 Network partitions . 25
3.9 Operational requirements . 25
3.10 Security requirements . 25
3.11 Data protection requirements . 26
3.12 Implementation . 26

4 Scality 27
1 Pre-indexing at the edge . 27

1.1 Overview of the use case . 27
1.2 Current development . 28
1.3 Detailed description . 29

(a) Architecture . 29
(b) Edge computing requirement 29

1.4 Data model . 30

LightKone D2.1(v1.0), September 30, 2017, Page 4

CONTENTS

1.5 Detailed description of the computations 30
1.6 Conflicting operations and invariants 31
1.7 Divergence and divergence control 31
1.8 Network partitions . 32
1.9 Operational requirements . 32
1.10 Security requirements . 32
1.11 Data protection requirements . 32
1.12 Implementation . 33

2 Lambda functions at the edge . 33
2.1 Overview of the use case . 33
2.2 Current development . 34

(a) Conflicting operations 34
(b) Invariants that exist in the application state 34
(c) Performance results/figures 34
(d) Persistence . 35
(e) Security threats . 35

2.3 Detailed description . 35
(a) Architecture . 35
(b) Edge computing requirement 36

2.4 Data model . 36
2.5 Detailed description of the computations 37
2.6 Conflicting operations and invariants 37
2.7 Divergence and divergence control 37
2.8 Network partitions . 38
2.9 Operational requirements . 38
2.10 Security requirements . 38
2.11 Data Protection requirements . 38
2.12 Implementation . 38

3 S3 local cache of central data . 39
3.1 Overview of the use case . 39
3.2 Current development . 39

(a) Conflicting operations 39
(b) Invariants that exist in the application state 39
(c) Performance results/figures 40
(d) Persistence . 40
(e) Security threats . 40
(f) Current deployment details 40

3.3 Detailed description . 41
(a) Architecture . 41
(b) Edge computing requirement 42

3.4 Data model . 42
3.5 Detailed description of the computations 43
3.6 Conflicting operations and invariants 43
3.7 Divergence and divergence control 43
3.8 Network partitions . 44
3.9 Operational requirements . 44
3.10 Security requirements . 44

LightKone D2.1(v1.0), September 30, 2017, Page 5

CONTENTS

3.11 Data protection requirements . 44
3.12 Implementation . 45

5 Stritzinger 47
1 No-Stop RFID . 47

1.1 Overview of the use case . 47
(a) Conflicting operations 49
(b) Invariants that exist in the application state 49
(c) Performance results/figures 49
(d) Persistence . 50
(e) Security threats . 50
(f) Current deployment details 50

1.2 Detailed description . 50
(a) Conflicting operations 51
(b) Invariants and other rules that govern the system 52
(c) Expected performance 54
(d) Persistence . 54
(e) Architecture . 54
(f) Edge computing requirement 55

1.3 Data model . 56
1.4 Detailed description of the computations 57
1.5 Conflicting operations . 58
1.6 Divergence and divergence control 59
1.7 Network partitions . 60
1.8 Operational requirements . 60
1.9 Data protection requirements . 60
1.10 Implementation . 61

2 Smart metering gateways . 61
2.1 Overview of the use case . 61
2.2 Current development . 62
2.3 Detailed description . 62

(a) Architecture . 62
(b) Edge computing requirement 63

2.4 Data model . 63
2.5 Detailed description of the computations 64
2.6 Conflicting operations and invariants 64
2.7 Divergence and divergence control 65
2.8 Network partitions . 65
2.9 Operational requirements . 65
2.10 Security requirements . 66

(a) Meters to gateways 66
(b) Gateways to cloud . 66
(c) Gateway to gateway 66

2.11 Data protection requirements . 66
2.12 Implementation . 67
2.13 Extension: Swarm of small satellites 67

(a) Current development 69

LightKone D2.1(v1.0), September 30, 2017, Page 6

CONTENTS

(b) Detailed description 69
(c) Data model . 69
(d) Conflicting operations and invariants 69
(e) Network partitions . 70
(f) Operational requirements 70
(g) Security requirements 71
(h) Data protection requirements 71
(i) Implementation . 71

6 Gluk 73
1 Agriculture sensing analytics . 73

1.1 Overview of the use case . 73
1.2 Current development . 74

(a) Conflicting operations 75
(b) Invariants that exist in the application state 75
(c) Performance results 75
(d) Security threats . 75
(e) Current deployment details 76

1.3 Detailed description . 76
(a) Architecture . 77
(b) Edge computing requirement 78

1.4 Data model . 78
1.5 Detailed description of the computations 79
1.6 Conflicting operations and invariants 80
1.7 Divergence and divergence control 80
1.8 Network partitions . 80
1.9 Operational requirements . 81
1.10 Security requirements . 82
1.11 Data protection requirements . 83
1.12 Implementation . 83

7 Data Protection 85
1 Introduction . 85
2 EU legal framework for the right to data protection 85

2.1 Directive 95/46/EC . 86
2.2 EU General Data Protection Regulation (GDPR) 86

(a) Increased territorial scope (extra-territorial applicability) 86
(b) Penalties . 87
(c) Consent . 87
(d) Data subject rights . 87

(d).1 Breach notification 87
(d).2 Right to access 87
(d).3 Right to be forgotten 87
(d).4 Data portability 88

(e) Privacy by design . 88
(f) Data protection officers 88
(g) Data protection per use case 88

LightKone D2.1(v1.0), September 30, 2017, Page 7

CONTENTS

8 Security Analysis 93
1 Introduction . 93

1.1 Security versus data protection 93
1.2 Methodology . 93

2 Coordination between servers and data storage for the Guifi.net monitor-
ing system . 94

3 Service provision support for the Cloudy platform 95
4 Pre-indexing at the edge . 97
5 Lambda functions at the edge . 98
6 S3 local cache of central data . 99
7 No-Stop RFID . 100
8 Smart metering gateway . 102
9 Agriculture sensing analytics . 103

9 Deep Learning 107
1 Introduction to deep learning . 109

1.1 Three-step design process . 109
1.2 Why is DL successful now and not before? 109
1.3 Introduction to the design of a deep neural network 110
1.4 AlexNet: a practical deep neural network 112
1.5 Deep learning compared to other disciplines 113

2 Relevance of deep learning to LightKone use cases 114
2.1 Computation model requirements for deep learning 115
2.2 Generalized convergence property 116
2.3 Training on edge networks . 116
2.4 Data protection and anonymization 116

Bibliography 119

A List of Acronyms 123

B Questionnaire 125
1 Overview of the use case . 125
2 Current development . 125

2.1 Conflicting operations . 125
2.2 Invariants that exist in the application state 125
2.3 Performance results/figures . 125
2.4 Persistence . 126
2.5 Security threats . 126
2.6 Current deployment details . 126

3 Detailed description . 126
3.1 Architecture . 126
3.2 Edge computing requirement . 126

4 Data model . 126
5 Detailed description of the computations 127
6 Conflicting operations and invariants . 127
7 Divergence and divergence control . 127

LightKone D2.1(v1.0), September 30, 2017, Page 8

CONTENTS

8 Network partitions . 127
9 Operational requirements . 128
10 Security requirements . 128
11 Data protection requirements . 128
12 Implementation . 128

LightKone D2.1(v1.0), September 30, 2017, Page 9

Chapter 1

Executive Summary

This deliverable presents real-world use cases of the industrial partners that require sig-
nificant edge computing and documents their informal requirements. We have identified
a large number of use cases covering the entirety of the project’s design space; in partic-
ular they cover both light edge and heavy edge. We summarize the use cases as follows,
grouped per industrial partner:

• Coordination between servers for the Guifi.net monitoring system (UPC) (Chapter
3, Section 1). Guifi.net is a community-driven project with the objective of creat-
ing an open telecommunications network based on a commons model. In the Guifi
model, users collaborate actively in the provision of services, and contribute to sus-
tain edge microclouds. In this use case, we reimplement Guifi’s current centralized
monitoring system at the edge, to improve its resilience and reliability.

• Data storage service for the Guifi.net monitoring system (UPC) (Chapter 3, Section
2). This use case is complementary to the previous use case and focuses on the
monitored data. It will reimplement Guifi’s current centralized data storage system.

• Service provision support for the Cloudy platform (UPC) (Chapter 3, Section 3).
The Cloudy platform allows Guifi users to provide services and applications them-
selves at the network edge. This use case will replace the current service provision
platform by a new platform that leverages LightKone’s edge computing support, to
increase autonomy and reliability of the service provisioning.

• Pre-indexing at the edge (Scality) (Chapter 4, Section 1). Scality provides a peta-
scale hybrid cloud storage across multiple clouds. This use case will add metadata
search at the edge, to reduce latency and improve search quality.

• Lambda functions at the edge (Scality) (Chapter 4, Section 2). This use case will
extend the storage system to allow applications to themselves define arbitrary func-
tions (i.e., serverless applications, also called lambda functions) to be executed by
the storage system when ingesting new data and retrieving queries. These func-
tions will be performed at the edge, allowing the system to be more scalable and
cloud agnostic, and provide enhanced data freshness.

• S3 local cache of central data (Scality) (Chapter 4, Section 3). This use case will
extend Scality’s storage system to enable local caching of data on client sites at the

1

CHAPTER 1. EXECUTIVE SUMMARY

edge. This will improve latency and availability, reduce the volume of data being
transferred to the client site, and allow temporary offline operation.

• No-stop RFID (Stritzinger) (Chapter 5, Section 1). Industrial manufacturing uses
transport systems to move workpieces (materials and partial products) between
processing stations. Each workpiece is identified by an RFID tag. Whenever a
workpiece arrives at a processing station, the RFID tag is read and written which
takes significant time. This use case will extend the current transport system by
implementing a distributed cache of RFID contents. This will allow the system to
process RFID data without stopping, which will significantly increase performance
of the manufacturing system.

• Smart metering gateways (Stritzinger) (Chapter 5, Section 2). Digitization of utility
metering is a growing market that promises significant cost savings and improved
resource usage, and is a stepping stone towards smart grids. This use case will
add smart gateways between the digital meters and the cloud. These gateways
will improve reliability and scalability, and enable local decision making for smart
grid applications such as battery management and controlling electric car charging.
Section 2.13 gives a related use case focusing on swarms of small satellites.

• Agriculture sensing and analytics (Gluk) (Chapter 6, Section 1). This use case
targets precision agriculture, in which sensor and actuator networks are used to
improve management of agriculture. The domain chosen for this use case is winery
management, which refers both to the wine cellars and the vineyards where the
grapes are cultivated. The use case will aid the farmer by moving the analytics on
the edge, which will improve visualization, prediction, and decision making.

The main body of this document gives detailed requirements for each of the above use
cases. To aid uniformity and completeness, the requirements were identified by present-
ing and discussing the use cases with all partners in project meetings and by presenting
to all industrial partners a questionnaire with detailed questions. This approach took
significant time, but it was necessary to create a common discussion language between
industrial and academic partners. In addition to the above use cases, we have identified
three areas that affect all use cases:

• Data protection (Chapter 7). Many use cases require personal data as part of their
operation. The implementation must therefore respect the users’ right to privacy.
We summarize the users’ rights and explain how this affects each use case.

• Security analysis (Chapter 8). While data protection safeguards individual users’
data, information security protects the information system itself. Security is there-
fore a necessary prerequisite for data protection. We do a preliminary security
analysis for each use case.

• Deep learning (Chapter 9). Deep learning is a branch of machine learning that
attempts to model high-level abstractions in data that are close to human-level un-
derstanding. For reasons of scalability and personalization, deep learning is in-
creasingly used directly at the edge. The LightKone edge computing framework
must therefore take into account the needs of deep learning at the edge. We do a
preliminary study of deep learning with respect to edge computing.

LightKone D2.1(v1.0), September 30, 2017, Page 2

Chapter 2

Introduction

Since the beginning of LightKone in January 2017, edge computing is continuing its rapid
growth. At the Net Futures conference in June 2017, Jorge Pereira made the prediction
that in 2027 there will be more than 1000 edge devices for every human being on earth
[35]. This document therefore does not only present the use cases we identified at the
start of the project, but also does an effort to keep up with the continuing development of
edge computing, and even to predict where we think edge computing is going. We have
identified new use cases, such smart metering (and its connection to smart grids) and
swarms of microsatellites, and we have identified one important new technique, namely
deep learning, that is poised to significantly affect edge computing. It is clear that by
the time our edge computing platform is mature, the societal use of edge computing will
have changed greatly.

This document presents the detailed informal requirements for the use cases defined
by the four industrial partners in LightKone, in collaboration with the academic part-
ners. These use cases will drive the development of our edge computing platform and
its programming model. The use cases cover the specific challenges of both light edge
computing and heavy edge computing. We have chosen to present a large number of use
cases, all compatible with the expertise of our industrial partners. This gives us a better
overview of the industrial applications of edge computing. It also gives us the most flex-
ibility to select appropriate use cases depending on the future evolution of the Internet
of Things. In addition to the use cases themselves, we identify three areas that affect all
use cases, namely data protection, security analysis, and deep learning. It is important
to understand these three areas on their own, independent of the limitations of particular
use cases. We have therefore devoted an individual chapter to each area.

1 Motivation for the use cases

The Executive Summary has already introduced the use cases; we will not repeat that
text. Instead, we will focus on the motivations of the industrial partners and how these
motivations inspire the use cases.

In Chapter 3, UPC presents three use cases in the context of the Guifi.net commu-
nity network. The first and second use cases tackle two independent components of
Guifi.net’s network monitoring system, with the objective of achieving higher resilience
and reliability. The first concerns the coordination of the monitoring servers themselves,

3

CHAPTER 2. INTRODUCTION

whereas the second concerns the distribution and replication of collected data to support
local and global analytics. The third use case aims to enable smarter service provision in
edge microclouds, which increases the scope of their application scenarios.

Chapter 4 presents Scality’s use cases. Scality provides large-scale object storage
platforms to a variety of companies. One of the promises of object storage is richer
metadata than traditional filesystems can offer. However, to truly benefit from the richer
metadata, the storage system needs to offer sophisticated search capabilities. Centrally
indexing billions of objects in a timely fashion can become an intractable problem. That
is why Scality’s use cases focus on increasing the abilities of their storage system. By
supporting the ability to perform partial indexing at the edge by the system’s clients,
up-to-date search becomes realistic. With the addition of remote partial replicas, and by
leveraging new edge and distributed serverless functionalities, as well as machine learn-
ing based inferencing at the edge to augment the object metadata, Scality will provide
new abilities that no other object storage platform can offer.

Chapter 5 focuses on industrial manufacturing. Stritzinger provides solutions for in-
dustrial transport in factories. The first use case shows how to overcome a limitation
of these solutions, which is the transport time: no-stop RFID removes this key bottle-
neck. Stritzinger also envisages an extension to the no-stop RFID with distributed online
planning; this document does not present this extension further because it may be out of
the scope of LightKone. In addition to industrial manufacturing, Stritzinger is exploring
how to use its embedded systems technology for other areas, namely smart metering and
swarms of microsatellites.

Compared to the other three industrial partners, Gluk’s application domains are in
what is traditionally considered to be Internet of Things, namely sensor-based edge ap-
plications. In Chapter 6, Gluk presents its vision of a sensor-based platform with analyt-
ics on the edge. They plan to use this platform in their products for many areas of daily
life, such as agriculture, health, smart homes, etc., depending on their business strategy.
For LightKone, Gluk have selected a use case focused on precision agriculture and the
challenges it offers for edge computing.

2 The importance of crosscutting topics
In addition to specific use cases, this document presents three crosscutting topics that can
potentially affect all use cases:

• Data protection (Chapter 7). Edge computing, by its very nature, is often directly
connected to individual users. Since LightKone is developing edge applications, it
is essential that we take the necessary precautions so that the user data is protected.
Each use case addresses its own data protection issues individually; this chapter
complements these explanations by presenting the guidelines and legal framework
that are common to all.

• Security analysis (Chapter 8). This chapter presents an initial security analysis
of each use case, based on the informal requirements given in the other chapters.
Security is a necessary prerequisite to data protection; whereas data protection
safeguards the users, security safeguards the application itself.

LightKone D2.1(v1.0), September 30, 2017, Page 4

CHAPTER 2. INTRODUCTION

• Deep learning (Chapter 9). This chapter presents a short introduction to deep learn-
ing and an initial analysis of how it can affect the use cases. Deep learning is a
branch of machine learning that can model high-level features in data that are close
to what human beings perceive. It is increasingly being used in edge applications
and current trends imply that it will have a significant effect on edge computing.
It is therefore necessary for LightKone to make sure that our edge computing plat-
form can support deep learning computations.

Data protection and security will be further elaborated in the rest of the project, during
the design and implementation of the edge computing platform, and its evaluation using
selected use cases. Deep learning is more speculative: we do not really know to what
degree it will affect the edge computing platform and the use cases we will implement.
What is likely is that we will need to implement some existing deep learning algorithms,
for example to do the computations needed for a deep neural network. This implies that
we need to make sure that our edge computing platform can support these computations.

3 Requirements elicitation and the questionnaire
In order to ensure consistent and complete use case definitions, we prepared a common
questionnaire that was presented to each industrial partner. Appendix B presents this
questionnaire. The questionnaire was designed by partner Stritzinger in concertation
with the other partners. Its questions can be divided into three groups:

• The first set of questions focuses on the goal of the use case and its general prop-
erties including the need for edge computing.

• The second set of questions focuses on the data model, the computations done,
invariants maintained and possible conflicting operations.

• The third set of questions focuses on the environmental conditions, such as network
partitions, data protection requirements, security requirements, and operational re-
quirements including constraints on implementation by the industrial partners.

Based on this questionnaire, each industrial partner defined a first set of use cases. These
use cases were presented and discussed during a project meeting. Subsequently, the most
relevant use cases were selected and their requirements further elaborated in concertation
with the academic partners. An academic partner was appointed to work together with
each industrial partner for the elaboration of the use cases. We decided to give broad
explanations of each use case, not only including information that is obviously important
(such as the data model, consistency requirements, and nonfunctional requirements such
as divergence), but other information as well, so the use case would be complete.

Not all use cases are equally well understood; some are still exploratory, whereas
others are more solid. This is why the use case descriptions are not all equally detailed.
When we considered a use case to be interesting, we included it in this report, even if its
explanation was less detailed than some others. We do not want to preemptively narrow
the scope of this document; we prefer to cast a large net and to decide later on in the
project what use cases to elaborate further.

LightKone D2.1(v1.0), September 30, 2017, Page 5

CHAPTER 2. INTRODUCTION

LightKone D2.1(v1.0), September 30, 2017, Page 6

Chapter 3

UPC

1 Coordination between servers for the Guifi.net moni-
toring system

1.1 Common background for the Guifi.net use cases

(a) Guifi community network environment

Guifi.net is a bottom-up, citizenship-driven technological, social and economic project
with the objective of creating a free, open and neutral telecommunications network based
on a commons model. 1 The whole network infrastructure can be seen as a crowd-
sourced, multi-tenant collection of heterogeneous wired and wireless network de-
vices with an Internet Protocol (IP) address, interconnected between them and forming
a [partially-]meshed network.

(b) Edge computing in Guifi.net

Edge computing builds upon the advantages of cloud computing, but extends the tradi-
tional cloud services with the capacities of local processing. Edge computing solutions
already operational in many industrial and consumer-oriented scenarios, provided by ma-
jor Internet service providers and customised by specialised enterprises.

In Guifi.net, a different edge computing model is considered in which, by contrast to
the above approaches, the users of edge services are enabled to collaborate and actively
participate in the service provision, and contribute to sustain edge microclouds. The aim
is a cloud which is formed by user-provided computing and communication resources to
allow providing services of local interest. Services include Internet access [14], but also
applications deployed within the community network. This concept perfectly matches the
geographical distribution and the multi-tenancy of the underlying Guifi.net infrastructure.

The cloud infrastructure for edge computing in Guifi.net is located at the network
edge and most devices that contribute to the resource pool are at the premises of the users
or in installations of municipalities. The software platform installed on these devices is
the Cloudy platform, which is open and can be extended with additional services by the
participants. The hardware used to form the infrastructure is heterogeneous, ranging from

1What is Guifi.net? - https://guifi.net/en/what is guifinet

7

https://guifi.net/en/what_is_guifinet

CHAPTER 3. UPC

Single-Board-Computer (SBC) to desktop PCs. While the user can continue to access
through the edge device the traditional cloud services, the collaboration and contributions
among user devices enable a microcloud of edge resources and services.

This approach for edge computing in Guifi.net started to be researched and devel-
oped in the last few years and nowadays counts with tenths of operational devices in the
community network [37].

(c) Current monitoring system for Guifi.net nodes

The monitoring system nowadays in production in Guifi.net is built around a central DB
(which is coupled with the Guifi.net website) that lists all the nodes in the network (i.e.
network devices, such as routers) and assigns them to the servers spread all over the
network, which are in charge of monitoring them. Each of these servers periodically
fetches a list from the central database (DB) containing the information about which
nodes it has to monitor to then check their status (uptime, ping RTT and traffic on their
interfaces). The information collected stays local to the servers, not being automatically
replicated or distributed anywhere else. The current system has a few shortcomings that
make it not fully reliable: each router is monitored, at most, by a single server; when a
monitoring server goes down, this is not automatically reported to the Guifi.net website or
the central DB so network nodes are left unmonitored because they are not automatically
reassigned to another server; data are stored at a single location only; etc.

The current Guifi.net monitoring tool, called SNPServices, was developed by the
community around the central DB and Guifi.net website, where the assignation of net-
work nodes to the different monitoring servers occurs. The Guifi.net website’s DB con-
tains a list of all the network devices with an IP address (i.e. wired and wireless routers,
Customer Premises Equipments (CPEs), switches, servers, etc.) that must all be moni-
tored. This list also includes the monitoring servers running the SNPServices tool them-
selves, since they are also part of the network infrastructure and have their own IP ad-
dress.

Each SNPServices instance (i.e. each monitoring server) periodically fetches an up-
dated list with the nodes it has been assigned. The server will only monitor the nodes in
the list, ignoring the rest of nodes in the network, no matter how close of far they are,
its current workload, etc. Additionally, each network node will only be monitored by a
single SNPServices instance (because of the way the Guifi.net website is implemented, a
network node can only be assigned to a single monitoring server).

Figure 1.1 depicts the current implementation of the monitoring system for the Guifi.net
nodes, based on the SNPServices tool.

While, in general terms, the SNPServices monitoring system works and fulfils the ba-
sic monitoring needs, it has several limitations and shortcomings, as it does not leverage
technologies for automation, distribution of the workload and decentralisation of coordi-
nation and decision-making. To name a few:

• Need for manual intervention: besides declaring the SNPServices server on the
Guifi.net website, the network zones and nodes usually require to be manually
assigned to a specific monitoring server.

• No automatic reaction to server failures: if one SNPServices instance crashes, is
stopped or removed, there is no automatic way to detect it from within the Guifi.net

LightKone D2.1(v1.0), September 30, 2017, Page 8

CHAPTER 3. UPC

Figure 1.1: Architecture of the current Guifi.net network nodes monitoring system, based
on the SNPServices tool.

central DB, in order to reassign nodes to another monitoring server.

• No redundancy: every node is monitored by (at most) a single SNPServices in-
stance. Therefore, if this instance fails, the nodes assigned to it will stop being
monitored, requiring manual intervention.

• No load balancing: a monitoring server might be overloaded or resources-constrained
(in terms of computing power, storage or network bandwidth) while others might
be idle, leading to an inefficient use of resources.

• No replication or distribution of collected data: each SNPServices instance collects
and keeps monitoring data for a set of nodes, but no other instance has a copy of
the data gathered.

As a result of this, some of the network nodes eventually end up not being properly
monitored (if at all), single points of failure and risk of data loss appear, etc. Furthermore,
the difficulty to access the collected data in a coherent and uniform way prevents taking
advantage of automation and big data analysis techniques to reduce human intervention
on the network, improve accounting and billing processes, etc.

1.2 Overview of the use case
In this section we describe the servers coordination use case for the Guifi monitoring sys-
tem. Please refer to Subsection 1.1 for a general background about the Guifi.net environ-
ment, its relationship with edge computing and the description of the current monitoring
system.

LightKone D2.1(v1.0), September 30, 2017, Page 9

CHAPTER 3. UPC

This use case will do the following: It will create and use distributed data structures to
support the coordination of the server to router assignments in the monitoring configura-
tion. The system will help to dynamically update and optimize these assignments, which
can be done according to various criteria, such as server load, network status, resilience
of the assignment with regards to the router position or accounting criteria.

This use case is part of the re-implementation of the current monitoring system, and
aims at improving its resilience and reliability by means of automation, distribution and
decentralisation, whose operation will be supported by Antidote DB. Four pieces of
software are envisioned in the whole system: a first piece related to how the central DB
(i.e. the Guifi.net website) feeds the monitoring system with the required information; a
second piece to enable the monitoring servers to coordinate between them and distribute
the workload on their own, according to different criteria; a third piece to allow the
servers to store and share collected data in a redundant fashion; and a fourth piece for
reporting information back to the central DB and the Guifi.net website. Of these four
pieces of software, this use case covers the second one.

The monitoring servers will keep a distributed monitoring servers , network devices
mapping which they will use to dynamically assign (and unassign) themselves which
nodes to monitor in function of different criteria (network distance, workload, etc.). Such
mapping will potentially be concurrently modified by any of the participating servers,
at any moment. The main computations will consist in editing this mapping between
the two sets of devices (network nodes and monitoring servers), while keeping it in a
consistent status and ensuring that every node is being actively monitored by at least one
server at any time.

In the context of a heterogeneous and geographically spread network such as Guifi.net,
partitions of diverse duration might eventually appear (seconds, minutes or -in the worst
case- hours). This could trigger isolated writings on the DB that would require reaching
a consistent state later, when the network is restored.

Antidote DB’s Eventual Consistency may allow to implement the mapping of mon-
itoring servers to network devices in a distributed and decentralised way, without sac-
rificing the reliability of the system (e.g. avoiding all the monitoring servers suddenly
withdrawing from monitoring a specific network node).

1.3 Current development
Please refer to Subsection 1.1-(c) for a description of the current development of the
monitoring system for Guifi.net nodes. We now discuss specific issues that can occur in
the current development.

(a) Conflicting operations

Currently there are no operations that manipulate the state of the application which need
coordination. The current monitoring servers , network devices mapping is centrally
generated, and there are no conflicting operations regarding which monitor watches each
node.

(b) Invariants that exist in the application state

Every network node must be actively monitored by a functioning monitoring server.

LightKone D2.1(v1.0), September 30, 2017, Page 10

CHAPTER 3. UPC

(c) Performance results/figures

There are no known performance figures for the current monitoring system. The list of
nodes contains ⇠ 34,000 active nodes and ⇠ 25 nodes are added daily. There are 285
monitoring servers, of which are 200 known - or considered - to be operative.

(d) Persistence

Both the monitoring servers , network devices mapping and the collected data need
to be persistent in the way they are implemented now. The mapping is currently stored
in the central Guifi.net website and DB and the collected data is stored at the different
monitoring servers.

(e) Security threats

A malicious user could set up a fake monitoring server that would not actually monitor
network nodes, or that would do it inaccurately. This would be difficult to detect since,
right now, each network node is only monitored by a single server and collected data is
stored at a single location.

(f) Current deployment details

Currently there are around 200 monitoring servers known or considered to be active.
These devices are low- to mid-end power devices, ranging from embedded ARM comput-
ers like the Raspberry Pi 2, low-power x86 Intel Atom-based devices like the Minix NEO
Z64 3, x86 virtual machines to refurbished bare-metal machines. The servers are spread
all over the Guifi.net network in an organic way, usually without a carefully planned dis-
tribution. Monitoring servers are connected to the Guifi.net network through their local
node; the physical connection is performed via cable (Ethernet). Guifi.net nodes are in-
terconnected by a mix of mid- to long- distance wireless links (WiFi) and wired (fiber
optics) links. Network latency between servers typically is in the 0.5 to 10ms range, and
throughput typically is between 1Mbps to 1Gbps (usually being at least in the 10s of
Mbps).

1.4 Detailed description
The application detailed in this use case is part of the new monitoring system for the
Guifi.net nodes aimed at automation, decentralisation, distribution, reliability and re-
silience. In particular, this use case covers the shared distributed storage that allows
different monitoring servers to coordinate between them in order to spread the workload.

(a) Architecture

The general architecture of the proposed use case, showing the monitoring servers and
their integration with the Guifi.net website and network nodes, is depicted in Figure 1.2.
On the top of the picture appears the Guifi.net website and its central DB, which contains

2Raspberry Pi - Teach, Learn and Make with Raspberry Pi: https://www.raspberrypi.org
3Minix NEO Z64: http://minix.com.hk/en/products/neo-z64-windows

LightKone D2.1(v1.0), September 30, 2017, Page 11

https://www.raspberrypi.org
http://minix.com.hk/en/products/neo-z64-windows

CHAPTER 3. UPC

SNPS-Gurb MaresmeSRVSNPSGSFHW-Graphs BCN-Srv-SNPS Cloudy-SNPS-UPCCloudy-PAL-SNPS Monitor Vic GuifiSNPS-test01

Gurb-ElSerrat

StHipolitCarles

VicJAnglada

StHipJordinadal

CTGEsplay

Trl-VlfCmp

can Ton

Ripoll-Josep

SMM Local Social

SVDT Ignasi

Vila_avelino

Vila_dani

Palamós-4

RodaPlARiera

Nodes list

G
ui

fi
.n

et
 r

ou
te

rs
M

on
it

or
in

g
se

rv
er

s
G

ui
fi

.n
et

 w
eb

si
te

 +
 D

B
(D

ru
p

al
 +

 P
H

P
 +

 M
yS

Q
L)

m
on

it
or

self-coordination
workload distribution

Monitoring servers list

UC1 domain

Figure 1.2: Architecture of the new monitoring system showing the different components
in UC1

the lists of network nodes and monitoring servers. These two lists are always provided
by the website, and can be considered to be correct and readily available at any time.
Compared to the current implementation, the main difference lays on the proposed mon-
itoring servers , network devices mapping, which is not generated centrally, but in a
distributed and collaborative way, by the monitoring servers themselves. To achieve this,
all the monitoring servers run a local instance of Antidote DB.

In this use case, the monitoring servers spread around the network share a distributed
data space, implemented by means of Antidote DB. The servers use this data space to
know which is the current monitoring servers , network devices mapping and update
it according to different criteria, making sure that all nodes are being actively monitored
and reacting to eventual failures (decommissioned servers, network partitions, etc.). Ad-
ditionally, the main Guifi.net web and DB server also runs an Antidote instance, con-
nected and synchronised with those running in the monitoring servers. This instance is
used as the single authoritative entry point for updates on the nodes list. The list may also
contain additional details or information about network nodes (i.e. their role in terms of
network topology, performance or economic interest) in order to prioritise its monitoring
or dedicate more resources to it.

The monitoring servers, once they have the list of nodes to watch, have to coordinate
between them in order to perform the actual nodes monitoring. First, they have to assign
every single node to - at least - one monitoring server. This task can be performed in
many ways (for instance, each monitoring server could start picking, at random, nodes
not yet assign and assign them to itself). Another method could be that monitoring servers
probed their reachability and round-trip time (RTT) to every network node to then link
each node to its closest monitoring server (or the closer ones).

LightKone D2.1(v1.0), September 30, 2017, Page 12

CHAPTER 3. UPC

In the context of a large Community Network (CN) like Guifi.net, where a combina-
tion of wireless and wired (fiber optics-based) links exist, it is possible to observe changes
in the network topology as the dynamic routing protocols react to the status of the links
between the nodes (link quality, RTT, throughput, usage, etc.). Despite unlikely, network
partitions may also eventually appear, even if for short periods of time only.

(b) Edge computing requirement

Guifi.net is a Community Network where the network infrastructure is crowd-sourced
by the different participants (individuals, collectives, enterprises, etc.). The deployment,
maintenance and operation of this decentralised network are shared among the diverse
participants of the different geographical areas connected. In this context, local, au-
tonomous edge applications that do not require or rely on the cloud better match the
current operation of the infrastructure. Additionally, edge computing can provide more
reliable monitoring data, especially in case of network partitions, low-throughput envi-
ronments, etc. Nevertheless, backing the application with Cloud-based or datacenter-
based computing might be considered for improved performance or reliability.

1.5 Data model
The data manipulated by the application consists of two sets of objects and a mapping
between these objects. A simplified depiction of the data model and the application
components involved in data manipulation is shown in Figure 1.3.

The first set contains a list with all the nodes in Guifi.net that have to be monitored.
All the Guifi.net nodes are identified by a unique numeric ID (e.g. 58266), which re-
mains immutable through all its lifespan. Additional information, such as an associated
IPv4 address (e.g. 10.1.33.33) may be attached as a string-formatted JavaScript Object
Notation (JSON) item. The current nodes list contains around 34,000 nodes, and grows
at a rate of 25 nodes per day. Objects in this list are immutable (each network node is
identified by its unique ID, which does not change through all its lifespan). The data in
this first set is only modified by authoritative updates issued from the Guifi.net website;
the monitoring servers only read it but do not modify it.

The second set contains a list with all the active monitoring servers. Servers are also
identified by a unique numeric ID, being the servers list a subset of the nodes list (a
monitoring server is indeed a device inside the network, with its own IP address, etc. that
must be monitored too). The data in this second set is only modified by authoritative
updates issued from the Guifi.net website; the monitoring servers only read it but do not
modify it.

The mapping between the nodes list and the servers list can be seen as a collection
of relations between objects, one in each set (one network node and one monitoring
server). Any monitoring server may modify the mapping between nodes and servers
(add, update or remove these relations at any time). According to different criteria -such
as current workload, network status and other- each monitoring server will, for instance,
assign itself a number of nodes and will update the monitoring servers , network devices
mapping accordingly. This assignation may change over time, as new nodes are added
to the list, the network conditions change, workload is redistributed, monitoring servers
join or exit the pool, etc.

LightKone D2.1(v1.0), September 30, 2017, Page 13

CHAPTER 3. UPC

Given the nature of the application, and in order to successfully deal with concurrent
updates of the mapping, eventual data consistency and integrity between the different DB
instances are required. By leveraging these properties, it can be ensured that all network
nodes end up being properly assigned to monitoring servers.

Monitoring servers listNodes list

Mapping

G
ui

fi.
ne

t
w

eb
si

te

Authoritative lists updates

BCN-Srv-SNPS

Cloudy-SNPS-UPC

GuifiSNPS-test01

Conflict-free updates

+

D
is

tr
ib

ut
ed

 D
B

M
on

ito
rin

g
se

rv
er

s

Figure 1.3: Representation of the data model and the different components involved in
data manipulation

1.6 Detailed description of the computations
Given the network nodes and the monitoring servers sets (i.e. lists), and the mapping
between the items in them, the monitoring servers will add, read, update or remove items
to this mapping according to different criteria or triggering actions cited above (changes
in the number of monitoring servers, addition of new network nodes, network partitions,
etc.).

The depictions of the architecture and the data model in Figures 1.2 and 1.3 illustrate
the data structures and roles. Due to network dynamics and server load variations, the
mapping will need to be managed permanently by the monitoring servers. Therefore,
each of the monitoring servers will require both lists and also their mapping.

LightKone D2.1(v1.0), September 30, 2017, Page 14

CHAPTER 3. UPC

1.7 Conflicting operations and invariants
The most important requirement for this application is that every network node must be
actively monitored by a functioning monitoring server at any time.

Servers shall update the mapping between network nodes and monitors in the repli-
cated DB without breaking the previous invariant. However, conflicting operations may
appear when two servers try to update an item in the mapping list simultaneously. For
instance, all the servers monitoring a given network node might report simultaneously
they quit doing it. In case a [long enough] network partition occurs or if a monitoring
server suddenly disappears from the pool, the remaining servers may proceed to delete
the node assignations the failing server might had left.

Given the nature of the application, conflicting operations leading to temporarily in-
consistent data would be acceptable, as long as the conflict is eventually resolved in a
certain period of time, and every network node is monitored at any time.

1.8 Divergence and divergence control
The application is expected to work appropriately with a propagation latency in the order
of a few seconds. An ”offline” mode or, similarly, a ”network partition mode” may exist
for a while (minutes, hours...) but might not make sense after a period of time if, for
instance, the nodes list becomes very outdated.

An indication on the divergence of data is not a must, but it might be interesting to
have information about the degree or severity of the divergence (e.g. as a metric for
knowing how much a monitoring service is ”integrated” in the whole system or out of it).

Towards this end, knowing that the data is not stale by more than some amount of
time would be interesting.

1.9 Network partitions
Natural partitions exist in the system, as the monitoring servers are spread around a large
network with different performance and throughput at every location. Some of the servers
may be placed close to or by the core network routers while others may be placed further
to the edge of the network.

1.10 Operational requirements
The application is running under Eventual Consistency (EC) for availability and re-
silience. It runs on low- to mid-end fixed infrastructure, in a few dozens of locations
which may have datacenter (DC) conditions or not. For details on the infrastructure
please refer to Section 1.3-(f).

In order to improve tolerance to network partition and churn, tens of full replicas of
the mapping data could be desirable.

The operational application may have tens of thousands of objects, each object being
a unique numeric ID, probably needing around 100 bytes per object. The total amount
of data should be around a few megabytes, growing a few kilobytes per day. The objects
universe is not partitioned.

LightKone D2.1(v1.0), September 30, 2017, Page 15

CHAPTER 3. UPC

1.11 Security requirements
Security is not a main concern right now, but features like access control on write oper-
ations permissions might be needed in the future. Auditing and rolling back offending
updates or overwriting by authoritative entities would be positive.

1.12 Data protection requirements
The application does not monitor personal data, but the mapping of devices connected to
a network. Therefore, there are no data protection requirements.

1.13 Implementation
Almost all the software developed for / in the context of Guifi.net is open source, there-
fore so should be this application.

2 Data storage service for the Guifi.net monitoring sys-
tem

In this section, we describe the storage service UC for data collected by the monitoring
system from the Guifi.net network nodes. Please refer to Subsection 1.1 for a general
background about the Guifi.net environment, its relationship with edge computing and
the description of the current monitoring system.

2.1 Overview of the use case
This use case covers the third piece of software of the monitoring system, which was
presented in Section 1.2.

The use case will do the following: It will use a distributed data storage service
structures to collect the data about the routers obtained from the monitoring servers. For
monitoring servers, the system will keep the collected data in a replicated and distributed
storage for analysis. Each server has gathered data locally, and will leverage the shared
storage to distribute it and replicate, while also helping to store data generated by other
servers.

Since more than one server may be monitoring a given node simultaneously, data con-
currently generated will need to be compared, agreed and coherently merged. The main
computations will be related to keeping a persistent distributed shared storage between
the different monitoring servers, where the data concurrently collected will be stored for
further analysis (performed locally or remotely).

The servers will, in general, store only a part of the whole data storage, but will be
backed by more powerful cloud-like servers with increased storage able to store the data
being collected by all the servers.

In the context of a heterogeneous and geographically spread network such as Guifi.net,
partitions of diverse duration might eventually appear (seconds, minutes or - in the worst
case - hours). This could trigger isolated writings on the DB that would require reaching

LightKone D2.1(v1.0), September 30, 2017, Page 16

CHAPTER 3. UPC

a consistent status later, when the network is restored. Additionally, this could lead to di-
vergence in the data reported by different monitoring servers for the same network node;
conflict resolution will be needed to deal with such situations.

Leveraging Antidote DB’s features will allow to automate the replication and dis-
tributed across the different servers in a decentralised way, while keeping the data persis-
tent and reliably stored.

2.2 Current development
Please refer to Subsection 1.1-(c) for the description of the current development of the
monitoring system for Guifi.net nodes.

(a) Conflicting operations

The current monitoring system is not affected by conflicting operations since each mon-
itoring server operates on its own, isolated from the other servers.

(b) Invariants that exist in the application state

The data collected by a monitoring server about a node must not be deleted until the node
is removed from the Guifi.net central DB.

(c) Performance results/figures

There are no known performance figures for the monitoring application. There are ap-
prox. ⇠ 34,000 nodes that must be monitored, and around ⇠ 25 nodes are added daily.
The current monitoring system uses ⇠ 1MB per monitored device.

(d) Persistence

The collected monitoring data must persist server reboots, service software updates, etc.
and not be lost when a monitoring server fails or is decommissioned.

(e) Security threats

A malicious user could set up a monitoring server that reports fake data for some or all
the nodes. This could lead to an unreliable monitoring service or unreliable data on which
to elaborate stats, graphs, etc.

(f) Current deployment details

Please refer to Section 1.3-(f) for details on the infrastructure.

2.3 Detailed description
The application detailed in this UC is a new monitoring system for the Guifi.net nodes
aimed at decentralisation, distribution, reliability, resilience and automation. In particu-
lar, this UC covers the persistent storage for servers to share and store collected data in a
redundant and distributed way.

LightKone D2.1(v1.0), September 30, 2017, Page 17

CHAPTER 3. UPC

(a) Architecture

SNPS-Gurb MaresmeSRVSNPSGSFHW-Graphs BCN-Srv-SNPS Cloudy-SNPS-UPCCloudy-PAL-SNPS Monitor Vic GuifiSNPS-test01

Gurb-ElSerrat

StHipolitCarles

VicJAnglada

StHipJordinadal

CTGEsplay

Trl-VlfCmp

can Ton

Ripoll-Josep

SMM Local Social

SVDT Ignasi

Vila_avelino

Vila_dani

Palamós-4

RodaPlARieraG
ui

fi
.n

et
 r

ou
te

rs
M

on
it

or
in

g
se

rv
er

s
G

ui
fi

.n
et

 w
eb

si
te

 +
 D

B
(D

ru
p

al
 +

 P
H

P
 +

 M
yS

Q
L)

m
on

it
or

distributed and replicated data storage

share and store collected data
back low-end nodes

UC2 domain

share and store collected data share and store collected data

graphs g
eneratio

n

website
 integratio

n

+

Figure 2.1: Architecture of the new monitoring system showing the different components
of UC2

The overall architecture of this second UC is depicted in Figure 2.1, which shows the
monitoring servers distributed among the Guifi.net network and the cloud-based storage
backing them. The monitoring servers shown in the middle of the picture are in charge
of checking the different network nodes below, and store the gathered data in a replicated
and distributed way by leveraging Antidote DB. On top of it lies a cloud-based DB
instance, with a greater storage capacity, that is able to store all the data being gathered
and generated by the monitoring servers themselves. This DB also provides the data
needed to elaborate stats and graphs to be shown via the Guifi.net website, depicted on
top.

The different DB instances are interconnected and synchronised, and are able to share
different data sets, depending on their hardware characteristics and available resources.
For instance, one low-end monitoring server might only store the data collected by itself,
while more powerful devices can store theirs and other servers’ data.

(b) Edge computing requirement

The edge computing requirement described in the first use case in section 1.4-(b) apply
also to this second use case. In addition, in this particular case, the edge devices are
to be based by cloud-like or datacenter-grade infrastructe, with enough computing and
storage resources to manage all the data being generated by the application, for increased
performance, reliability and ease of access to the data.

LightKone D2.1(v1.0), September 30, 2017, Page 18

CHAPTER 3. UPC

2.4 Data model
The data managed by the application consists of tens of thousands of time-series data
points, corresponding to the different aspects of network nodes being monitored (RTT,
interfaces traffic, etc.). These data are stored in Round-Robin Database (RRD) format,
with a fixed maximum size per attribute of 1 MB. This means that, as data are continu-
ously collected, the required storage is kept constant. To achieve this, older values are
averaged over time, resulting in less fine-grained numbers.

2.5 Detailed description of the computations
Given the network nodes monitored by the servers (i.e. lists), these servers will add the
collected monitoring data to stored objects. On this data, aggregations will need to be
performed. Additional operations may become of interest for the detection of events or
anomalies.

2.6 Conflicting operations and invariants
For higher resilience, each router should be monitored by more than one servers. Each
measurement of the different servers is obtained at a specific moment identified by a
timestamp. This measurement data should be merged and correctly ordered taking into
account the clock of each monitoring server.

2.7 Divergence and divergence control
As in the previous use case, the application can probably work appropriately with a prop-
agation latency in the order of a few seconds. An ”offline” mode or, similarly, a ”network
partition mode” may exist for a while (minutes, hours...) but might not make sense after
a period of time if, for instance, the nodes list becomes very outdated.

Having information about divergence is not a must, but might be interesting to have
information about the degree or severity of the divergence (e.g. as a metric for knowing
how much a monitoring service is ”integrated” in the whole system or out of it).

Regarding the quantification of divergence, knowing that the data is not divergent by
more than some amount would be interesting.

2.8 Network partitions
As in the previous use case, natural partitions exist in the system and may also temporar-
ily happen, since the monitoring servers are spread around a large network with different
performance and throughput at every location. Some of the servers may be placed close
to or by the core network routers while others may be placed further to the edge of the
network.

2.9 Operational requirements
The application runs under EC for availability and resilience. It runs on low- to mid-
end fixed computing infrastructure, in a few dozens of locations which may have DC
conditions or not. For details on the infrastructure please refer to section 1.3-(f).

LightKone D2.1(v1.0), September 30, 2017, Page 19

CHAPTER 3. UPC

The storage system should have tenths of full replicas of recent data in order to allow
accounting and billing operations to be conducted.

Tens of thousands of objects, each object being a unique numeric ID, probably need-
ing 100 bytes per object. The total amount of data should be around a few megabytes,
growing a few kilobytes per day. The objects universe is not partitioned but it could be
interesting to have it partitioned.

2.10 Security requirements
Security is not a main concern right now, but features like access control on write opera-
tions might be needed in the future, as well as digital signatures for authentication. Au-
diting and rolling back offending updates or overwriting by authoritative entities would
be positive.

2.11 Data protection requirements
The applications do not use personal data, but stores data about monitored networking
equipment. Therefore, there are no data protection requirements at this point in time.

2.12 Implementation
Almost all the software developed for / in the context of Guifi.net is open source, as
should be this application.

3 Service provision support for the Cloudy platform

3.1 Overview of the use case
This use case aims to improve the Cloudy service provision platform used in Guifi.net in
the provision of services and applications through microclouds at the network edge.

The use case will do the following: It will create and use distributed data structures
to support service publication and service discovery in the microclouds formed by the
Cloudy platform4. As a result, the services offered in microclouds are instantly found by
other Cloudy nodes. Data analysis may be performed on the persistent historical service
data to support the development of new features of the Cloudy platform such as service
placement and predictions.

On top of the Guifi.net network infrastructure, participants (e.g. individuals, Small
and Medium Enterprises (SMEs), organisations) run their own public and private network
services (backups, Virtual Private Networks (VPNs), file sharing, Internet access, etc.).
Some of these are offered for free, usually in a best-effort manner (e.g. a user offering
bandwidth-limited proxy-based Internet access), while others are offered for a monthly
fee (and including some guarantees and adequate Service Level Agreement (SLA)). This
use case focuses on the framework for the provision of these services beyond the network
operation itself (e.g. monitoring). These services complement the Internet connectivity,
and should add value to the network.

4Cloudy - A community networking cloud in a box: https://cloudy.community/

LightKone D2.1(v1.0), September 30, 2017, Page 20

https://cloudy.community/

CHAPTER 3. UPC

The services publicly and openly offered on top of Guifi.net (i.e. by the community,
for the community) need to be publicly announced through the Guifi.net website. This
process, however, is performed mostly manually, which leads to many services not being
published, updated or unpublished when they are shut down.

Historically, community services in Guifi.net have been hosted in heterogeneous
hardware, such as low-end x86 computers, refurbished desktop Personal Comupters
(PCs) and servers. More recently users in Guifi.net have started using Virtual Ma-
chines (VMs) and lately Docker 5 thanks to the Cloudy platform.

The servers providing services to the community are deployed in an organic fashion
all around the network, without a careful distribution plan, as communities or individuals
have installed them to fulfil their needs. They are found, therefore, both at the network
edge (at the users’ premises) and at more central nodes with better network connectivity.
On the one hand, this heterogeneity in terms of hardware and software might add an extra
degree of complexity but, on the other hand, almost all of the services run in Linux-based
platforms and are based on open sourced code.

3.2 Current development

A limited version of the use case proposed here is already materialized and is currently
in production [6]. Nowadays, the Cloudy platform leverages Serf as the backend for the
servers to publish their running services and discover the others all over the network.
Serf is a decentralised, fault-tolerant, lightweight and highly-available tool for cluster
membership, failure detection and orchestration based on a gossip protocol.

While Cloudy has relied on Serf for the few past years and has proven very convenient
in the few past years, having a multi-tenant persistent-storage weakly-consistent back-
end (similar to Amazon DynamoDB, powered by Antidote DB) would be one of the
steps to investigate for simplifying such deployment of applications, running alongside a
container/Virtual Private Server (VPS)/server provisioning service.

This storage backend could improve on some of the limitations we face with the cur-
rent Serf-based service publication and discovery (current limitations: limited message
size in Serf, no historic data saved, no analytics on service data to trigger smart ”actions”).

(a) Conflicting operations

The number of services per service provider can be updated concurrently by the different
service providers. Currently, however, the data objects for this information are not shared
for writes. The resulting list of services per service providers is obtained from the above
data object.

(b) Invariants that exist in the application state

In the current implementation, the list of services and service providers is always avail-
able from the search operation.

5Docker - Build, Ship, and Run Any App, Anywhere: https://www.docker.com/

LightKone D2.1(v1.0), September 30, 2017, Page 21

https://www.docker.com/

CHAPTER 3. UPC

(c) Performance results/figures

In the current use case development, there are no qualitative performance metrics. The
usage is for the information of end users and using a best effort model. This approach
excludes other scenarios which have already been envisioned [7], such as commercial
services, which may need performance metrics to operate with SLAs.

(d) Persistence

The information on services, which is currently available in a Cloudy microcloud, refers
to instantaneous values of the services which is queried to the messaging service (im-
plemented by Serf). This data includes the availability and service characteristics. This
data is not persistent. It is not stored at the Cloudy nodes nor at the Serf daemon, but
disappears if the remote service providing Cloudy node disappears or is not reachable.
Regarding the instantaneous values, it could be interesting to dispose of a copy persistent
within a limited time in order to compute indices from the service availability, such as
contributions which could be used by a billing and accounting system.

Historical data on services is currently not stored nor available, though it is desirable
to have it, which would allow to conduct analysis and predictions to improve the service
performance. What the historical data concerns, the usage could include 1) the mentioned
billing and accounting, for which several months of data should be stored, and 2) data
analytics for prediction, for which persistence for a data size suitable for the training of
machine learning tools would be required.

(e) Security threats

Currently there are no specific measures in place to address security threats. As a conse-
quence, there is the possibility that users can provide incorrect or manipulated data. It is
not an issue at this point of time, but may become an issue for the envisioned advanced
role in the future of such microclouds at the network edge.

(f) Current deployment details

The Cloudy nodes are deployed in the Guifi community network. Tenth of nodes use the
Cloudy platform. The devices on which this software runs are heterogeneous. There is
no specification for the hardware of a Cloudy node. Nevertheless, the scenario suggests
as scope of hardware mini-PCs, which the users can run in a 24/7 mode with low energy
consumption. The Cloudy devices communicate with each other over IP.

3.3 Detailed description
A distributed framework for the deployment of services, where the different server ma-
chines or instances are interconnected and share a common space, would allow the de-
ployment of automatically orchestrated services, especially those publicly available to
any user, but would also allow for commercial services to appear and be offered and
requested on demand. Having a multi-tenant persistent-storage weakly-consistent back-
end, e.g. powered by Antidote DB, would be one of the obvious steps in simplifying

LightKone D2.1(v1.0), September 30, 2017, Page 22

CHAPTER 3. UPC

such deployment of applications, running alongside a container/VPS/server provisioning
service.

The envisioned needs for this use case are components that enhance the service pro-
vision function of the Cloudy platform with improved scalability, reliability and avail-
ability, described in the following subsections.

(a) Architecture

The common software platform in Guifi.net to enable a microcloud at the network edge
is Cloudy6. Cloudy runs on diverse hardware in Guifi.net as illustrated in Figure 3.1.
Cloudy nodes within a microcloud have different administrative domains, where each
node often belongs to a different community network member. There is also a multi-
tenant usage of the cloud node’s resources, since the resources are shared with the com-
munity, therefore used by the community and the node owner.

Figure 3.1: Heterogeneous Cloudy devices in Guifi.net

(b) Edge computing requirement

The infrastructure used to form the microcloud environment is composed by the Cloudy
devices located at the network edge. The edge computing scenario is therefore the result-
ing model from Guifi.net’s service provision approach.

Data center cloud computing would also be compatible with the Guifi.net approach
in the sense that servers could be achieved by a crowd-funding approach [8] and being
available as a common good. From an organizational point of view, however, such crowd-
sourced servers seem to be more difficult to achieve at this point of time. First, users
will need to be satisfied and convinced of the value of microcloud-based services. After
this has happened, the interest and usefulness perception of for instance backup services
would increase the willingness to conduct crowd-funded hardware purchase.

From a technical point of view, data center cloud infrastructure within Guifi.net could
provide a valuable support to an edge microcloud. Many services could be offered with
improved guarantees and functionalities if a stable data center infrastructure can be lever-
aged by the edge-based services.

6http://cloudy.community/

LightKone D2.1(v1.0), September 30, 2017, Page 23

http://cloudy.community/

CHAPTER 3. UPC

From a conceptual point of view, edge computing with microclouds can also be seen
as a consequent application of Guifi’s network provision model, which provides the com-
munication network as a common good by the contribution of many single networking
devices, to service provision.

3.4 Data model
The main data objects are first the service availability object referring to the services and
the list of providers (Cloudy nodes) where they are offered, and secondly, the service
provider object, referring to the service providers and the list of services each of them
offers. From operations using these basic data objects, additional information could be
extracted and stored in order to support specific functions which this use case could
enable.

3.5 Detailed description of the computations
The main computations for this use case will be related with keeping a distributed and
persistent storage layer to improve the communication and coordination between the dif-
ferent crowd-sourced servers and applications. In addition, functions like orchestration,
smart service placement or workload distribution, which are not present as of today, could
be fostered by operations on the data objects. While the main operations that need to be
supported include write, read, update and delete of data, additional operations, which
would implement specific steps of a recognition mechanism, could target to extract in-
formation from the data.

3.6 Conflicting operations and invariants
The service availability object as well as the service provider object should contain con-
sistent data to reflect the instantaneous service availability. Using inconsistent data by
users would lead to reduced Quality of Experience (QoE). In M2M interactions, incon-
sistent data could lead to incorrect results and decisions.

Concurrent writes on the data objects could for instance produce incorrect service
availability information. A service may appear to be available to other nodes in a moment
when the service providing nodes is not reachable.

3.7 Divergence and divergence control
In the edge environment found in Guifi.net there is latency in the network layer, which
is caused by the network characteristics. Divergence within near-real seems acceptable
when the range of the quantities, on which this divergence happens, are not critical for
the service provision. For instance, if for a determined service a large amount of service
providers are available, a temporal divergence of a observed value from the real value
will not be critical. Differently, if the quantities are very small, with divergence a ser-
vice availability may be suggest while it is not the case, which would produce incorrect
operations and should be avoided.

If there is divergence, then information or qualification of the information with re-
gards to divergence may be interesting, but it is not a must.

LightKone D2.1(v1.0), September 30, 2017, Page 24

CHAPTER 3. UPC

A probabilistic quantification for the divergence could be a nice to have feature, but is
not essential while the services are provided as best effort and without SLAs. However,
for future scenarios which could involve commercial operations, such probabilistic quan-
tification could be important for cloud service providers to decide on measures for SLA
compliance. Specific requirements on the metrics, however, would possibly be service
provider dependent.

3.8 Network partitions

In the community network the servers are spread around a large network with different
performance and throughput at every location. Network partition happens from time to
time such that some servers are unreachable.

Even if there is no partition, latencies may vary during the network operation. Very
different latencies between the service providing nodes can happen during the day be-
tween two determined nodes and in general, between service provisioning nodes, there
will be different latencies within the community network scenario.

3.9 Operational requirements

The application is running under EC because of the characteristics of our scenario, where
most servers are crowd-sourced and deployed at the edges of the network. The applica-
tion currently does not involve data centers, but may do so in the future to add additional
storage capabilities.

The devices on which the service provision framework is deployed are mainly low- to
mid-end devices (embedded ARM computers like the Raspberry Pi 7, low-power x86 In-
tel Atom-based devices like the Minix NEO Z64 8, x86 virtual machines and refurbished
bare-metal machines).

Service data objects should be replicated in the future to address churn, network par-
tition and performance.

The number of service data objects can initially be estimated as being in the range of
hundreds of objects. However, if the current trend towards microservice provision gains
a stronger momentum in the future, we can expect that the number of data objects will
greatly increase.

3.10 Security requirements

At the current point of the use case, security issues are not a main concern now, but
required for future extensions. For instance, access control on write operations might
be needed in the future, as well as authentication. The Guifi.net Lightweight Directory
Access Protocol (LDAP) server could be used for authentication and approval or denial of
operations. Message integrity could also be a desirable feature. Due to the transparency
concept used in Guifi.net, confidentiality may only be needed for specific cases.

7Raspberry Pi - Teach, Learn and Make with Raspberry Pi: https://www.raspberrypi.org
8Minix NEO Z64: http://minix.com.hk/en/products/neo-z64-windows

LightKone D2.1(v1.0), September 30, 2017, Page 25

https://www.raspberrypi.org
http://minix.com.hk/en/products/neo-z64-windows

CHAPTER 3. UPC

3.11 Data protection requirements
The purpose of the service is to make service announcements to the public (other Cloudy
users). Data protection requirements for the use case operation are not identified at this
point of time. While the services/servers or applications may handle user-sensitive data,
the use case itself does not manipulate user data.

3.12 Implementation
The Cloudy platform leverages PHP and Bash Shell scripting, and interacts with other
components and applications through a Representational state transfer (REST) Application
Programming Interface (API). As most of the software developed for / in the context of
Guifi.net is open source, released under the GNU General Public License (GNU GPL);
further contributions to the platform shall follow this approach.

LightKone D2.1(v1.0), September 30, 2017, Page 26

Chapter 4

Scality

1 Pre-indexing at the edge

1.1 Overview of the use case
While most enterprise data today originate from and is stored in on-premises storage
solutions, use cases for hybrid cloud storage are emerging in many industries. For ex-
ample, in media, the creation of content in on-premises private clouds leveraging object
storage has become prevalent, but the use of public cloud services for content distribution
(CDN) or compute-bursting for transcoding is growing. There exists thus a need for a
centralized abstraction of multiple storage services, either on-premise or 3rd party object
storage infrastructure platforms.

An important capability of a hybrid cloud storage solution is to enable metadata and
semi-structured data search, across the federation of all underlying clouds. The ability to
perform searches may be a preferred way for applications to retrieve objects, and would
be a natural retrieval mechanism that can complement the usual by-key semantics of
object storage systems.

Scality has introduced the Zenko Multi-Cloud Controller (Fig.1.1), an open-source
project that provides a unifying storage interface (an Amazon S3 compatible API) while
supporting multi-cloud backend data storage systems. Backend storage systems include
both on-premise and as well as other cloud services, including: Amazon S3, Microsoft
Azure and Google Cloud Platform. Zenko provides an engine that federates metadata to
enable policy-based data management. It enables data replication across clouds, data
migration services and will be extended to allow cloud workflow services, including
cloud analytics and content distribution. Currently, work is ongoing on Zenko to provide
an Apache Spark-based metadata search tool on application-defined S3 metadata. The
objective of that development is to unify metadata search across the namespaces/clouds
managed by the system.

There are a number of challenges associated with providing metadata search in a
geo-distributed multi-cloud storage system. Approaches like the one currently being
developed, that do not involve indexing, require significant resources at query time and
can suffer from excessive delays. Indexing while data is being written increases both the
latency of write operations as well as the IO requirements on the backend systems. If
batch or background indexing is performed, the staleness of the indexes increase, thus
reducing the usefulness of the indexing.

27

http://www.zenko.io/

CHAPTER 4. SCALITY

Figure 1.1: Zenko Multi-Cloud Controller Architecture.

In this use case partial indexing will be performed at the edge using the clients that
are storing the data or possibly using other edge resources. These indexes will be created
in real time or as nearly so as possible. The partial indexes can either be combined into
a global index in the background or combined at query time to provide complete results.
Ideally, a measure of the incompleteness of the indexes will be provided together with
query results. Results of such queries can be used to produce views of the data, for
lifecycle management, and for improving compliance by identifying sensitive data from
metadata tags. The current desired scope is to provide indexing on all object metadata,
but full text indexing of stored objects might become realistic if sufficient edge resources
can be made available.

By performing partial indexing at the edge, staleness and write latencies can be sig-
nificantly reduced, and the sophistication of the indexing can be increased. It becomes
possible to implement advanced techniques such as machine-learning inferencing-based
indexing on different data types. Several possibilities for more sophisticated indexing
options will be discussed further in later sections of this document.

1.2 Current development
As of today, Zenko includes an Apache Spark-based metadata search component. While
the basic metadata search feature exists, there are a number of challenges associated with
the model. The current implementation does not index data as it is being stored and does
not distribute indexing work across the system. One key challenge is to generate partial
indexes in such a way that global search results can be obtained in a timely fashion, even
in the event of a network partition.

This use case aims at addressing the limitations of the current implementation of
metadata search in Zenko, as well as exploring further enhancements to the existing sys-

LightKone D2.1(v1.0), September 30, 2017, Page 28

CHAPTER 4. SCALITY

tem which could be made possible by performing computations at the edge. Potential
benefits that edge computing can bring to the system are further discussed in 1.3(b).

1.3 Detailed description
We are envisioning a new system that will work along with Zenko, and improve the sys-
tem’s search functionalities. The system should perform pre-computations on data at the
client side, before storing them to the backend storage systems. Pre-computations may
include maintaining indexes, in order to enable more efficient search on S3 metadata
and semi-structured data, generating object hashes, and encrypting data. These compu-
tations could be performed on a per-client operation basis. The computed sub-indexes
and hashes would be transferred to the storage backends along with the encrypted data,
reducing central site computation loads, in the case of on-premise storage systems that
support this functionality. For other clouds that do not enable indexing, the system could
perform merging of the per-operation sub-indexes, maintain and store the resulting index,
thus enabling metadata search across all clouds.

(a) Architecture

Figure 1.2 depicts a sample architecture for the proposed system. A layer of pre-computation
nodes operates as an intermediate layer between client applications and the backend stor-
age systems. These nodes may act as index caches, storing partial indexes generated
from recent client writes. When a client performs a write, the index entries generated
from the write will be stored on a pre-computation node. Pre-computation nodes may
then communicate with each other in order to aggregate partial indexes. Eventually, in-
dexes should be flushed from the cache and merged to the global index, which will be
stored at the backend systems.

The clients accessing the system are likely the most numerous component and are
consequentially the most interesting for use in edge computation. The backend servers
are typically deployed in groups of five, so that they number less than 20 servers, even
in a very large deployment. It remains to be determined exactly how and where the
pre-computation nodes should be deployed.

(b) Edge computing requirement

The proposed system can benefit from the use of edge computing by:

• Reducing computation load at the core of the system and allowing real-time up-
dates of indexes;

• Improving responsiveness in case of partitioning;

• Accommodating different cloud systems, providing different functionalities and
data models;

• Enabling more sophisticated indexing techniques. Deep learning inferencing could
be used to introduce more sophisticated index elements in complex data such as
images, videos or text documents;

LightKone D2.1(v1.0), September 30, 2017, Page 29

CHAPTER 4. SCALITY

Figure 1.2: Proposed system architecture.

• Pre-indexing before encryption allowing search on encrypted data, which can only
be done at the edge before data is encrypted.

1.4 Data model
The system’s data model is that of an object storage. The system stores objects, com-
posed of a unique identifier (key), an uninterpreted blob of data (content), and a set of
metadata attributes. Metadata consist of both attributes generated by the storage system
(content size, time of last modification, author, access control lists), and custom, user-
defined attributes, represented as arbitrary key-value pairs (tags). Objects are organised
in collections called buckets, which form a flat namespace.

Object data is immutable, while metadata is mutable. Writing to an already existing
key creates a new version of the object. However, object’s metadata can be modified
(adding and removing tags, modifying ACLs) without creating a new version.

The indexes proposed here allow searches potentially based on all the metadata avail-
able. The exact form that these indexes should take, remains a somewhat open topic.
Precise schemas allow fast searches of specific attributes, but limit the flexibility of of
the searches that can be performed. As much as possible an indexing model that supports
mapping of index data onto different schemas should be preferred.

1.5 Detailed description of the computations
Computations to be executed at the edge include:

• Hash signature generation: Hash message authentication is used for authenticating

LightKone D2.1(v1.0), September 30, 2017, Page 30

CHAPTER 4. SCALITY

S3 uploads;

• Encryption of the data;

• Index generation: Generating inverted indexes on metadata attributes or semi-
structured content, possibly involving bitmap, or compressed bitmap computations.
Potentially index generation on more complex data such as images or text;

• Index lookups in response to search queries.

Additional computations may involve creating query execution plans including sub-queries
to multiple indexing nodes and storage backends, and joining the retrieved results.

Typical data flow patterns include applications writing data to the storage backends
and retrieving search results from the system. Data are transferred from client applica-
tions to an intermediate layer, where the above computations are performed and then to
the backend storage systems. In the case of search queries, a list of object keys (and not
the actual data) is returned from the intermediate layer to the client application.

1.6 Conflicting operations and invariants
Invariants involved in the operation of the indexing system are:

1. If a condition holds for an object, then an index lookup for this condition should
contain the object as part of the results.

2. If an object is contained in the results of an index lookup for a given condition,
then the condition holds for this object.

3. As an option, if access control does not allow objects to be viewed, they are filtered
from results. This requires causal consistency for ACL updates (see Sec. 1.10).

Violations of (2) (false-positives) should be allowed as they can be corrected by
checking the source data. Violations of (1) (false-negatives) may occur temporarily, but
the invariant should eventually be true, once the index is up-to-date with the source data.

Concurrent updates may result in conflicting application states. As an example, two
applications may concurrently update an object’s metadata attribute with different values.
The pre-indexing system will separately generate index entries for both tag values. If the
storage system then resolves the conflict by selecting one version of the object’s metadata,
this will result in a situation where both version exist in the index, and only one of them
is true.

1.7 Divergence and divergence control
Indexes may be out-of-date, but can be allowed to gradually converge. Applications will
benefit from knowing how divergent search results are, and possibly will be able to spec-
ify a maximum amount of divergence allowed, or generate system alarms or warnings
when limits are exceeded. Useful data on divergence includes:

• The number of objects stored but not yet indexed;

• The percentage of the total data not yet indexed or updated;

LightKone D2.1(v1.0), September 30, 2017, Page 31

CHAPTER 4. SCALITY

• Time since most recent data sync;

• Estimation of time to full convergence.

Additionally, client applications will benefit from being able to specify a maximum
amount of divergence that can be allowed.

Probabilistically Bounded Staleness [9] presents a model for providing expected bounds
on data staleness. This work can be studied as a starting point for quantifying the diver-
gence between index and source data.

1.8 Network partitions
The system should be able to tolerate partitions between pre-computation nodes. Dis-
connected partitions could maintain sub-indexes independently, and merge them once
the connection between them is re-established. The ability to continue writing data in the
event of a partition is a highly desirable characteristic, if the indexes can converge after
the partition is resolved.

However, partitions between the backend storage and the rest of the system may not
be tolerated, as the system would neither be able to persist the source data nor the indexes.

1.9 Operational requirements
The system should:

• Be able to scale to billions of objects, and petabytes of data;

• Be geo-distributed across different geographic locations;

• Remain available even in the presence of network/server/data centre failures.

1.10 Security requirements
Updates to access control objects are handled on other parts of the system. However, ac-
cess control should be applied to query results to prevent data leakage via indexes. It can
be managed either on object or bucket granularity, with bucket granularity being the min-
imum requirement. Returning search results for inaccessible data should be configurable,
but if activated, search results must be filtered to hide private data. A corresponding ACL
invariant is mentioned in Section 1.6 of this chapter.

1.11 Data protection requirements
The sensitivity of the stored data varies greatly across the product’s user base. All data is
expected to be treated with care, but highly-sensitive users are expected to encrypt data at
the source. At rest, encryption also remains a possibility and should be considered as an
edge function. Notably, as mentioned, index creation before encryption is an attractive
functionality.

LightKone D2.1(v1.0), September 30, 2017, Page 32

CHAPTER 4. SCALITY

1.12 Implementation
Long-term plans include integration of the indexing system into the core Scality tech-
nologies for storage at scale of immutable data and object metadata. A fully distributed
LevelDB implementation with RAFT-based distributed session management is used in
this model. An open source version with single LevelDB instances will be used for much
of this work. The code is primarily Javascript and Typescript based Node.JS code. The
sources are available on Github as well as Docker images on Docker Hub. More de-
tails are available on the the Zenko.io website. The existing development only provides
reliable storage of the metadata associated with the objects and provides no indexing
capabilities. An implementation of indexing that does not increase latency or reduce
availability is highly desirable. For this, leveraging Antidote and SyncFree with CRDT
based semantics currently appears to be the most promising approach.

2 Lambda functions at the edge

2.1 Overview of the use case
Serverless compute services enable cloud-based applications to run application code on
cloud infrastructure without the need for infrastructure management. They employ an
event-driven model, enabling users to define functions to be executed in response to
events. These services are suitable for a number of different use cases, including data
analytics, log filtering, and data transformations.

An important extension to a hybrid cloud storage system would be to enable appli-
cations to define lambda functions that will be executed in the path of data ingestion in
response to specified events, and produce results that can be then retrieved by queries.
Performing these operations at the edge, and then aggregating the results to produce
system-wide results can enable the system to be more scalable, cloud agnostic and en-
hance data freshness. There are similarities with a map-reduce approach, but the concept
is more a data-flow model, where all data is analyzed or transformed as the data is be-
ing persisted. The outcome may or may not involve a reduce operation that generates
summary information for all data.

An example application is the generation of execution logs from multiple sources in
the cloud. In order to generate analytics, the application needs to pull the logs from the
cloud on a regular basis and process them. Using the proposed service, a function will
be triggered when a new log file is uploaded. It will run at the edge and calculate partial
analytics over the uploaded data. Partial analytics from multiple sources may then be
merged to produce system-wide results.

Examples, where no summary results are generated could involve distributed process-
ing performing computations on individual pieces of data, such as:

• Stream-data processing for validation, encryption, addition of digital rights con-
trols.

• Data transformations including thumbnail images, adding tags to media files, sep-
arating audio and video tracks etc.

• Reformatting diverse log data into a consistent form.

LightKone D2.1(v1.0), September 30, 2017, Page 33

http://www.zenko.io/

CHAPTER 4. SCALITY

Other potential use cases include both cases where clients perform local computations
and then aggregate the computed results to produce global results, such as:

• Log filtering (count event occurrences)

• Statistical analysis of metadata attributes (calculate summary statistics such as
sum/max/min/average of numerical attribute values)

2.2 Current development
Public cloud infrastructures today include serverless or Lambda function options, and
could be used to provide part of this functionality [30]. Serverless functions are becoming
a popular notion, but the appropriate place to execute them remains somewhat uncertain.
However, the long-term objective is to make the answer to that question immaterial. For
this use case, the thin or thick edge could potentially be exploited for these types of
operations. The key characteristic is the ability to simply request or mandate operations
on the data path either inbound, outbound, or time based. The workflow engine currently
available in Zenko could be adapted to trigger and manage serverless operations.

(a) Conflicting operations

In the current development any such operations, if performed at all, are performed cen-
trally using batch methods, which limits conflicts, but also restricts the timeliness of the
results. As the results of this work push the computations further towards the edge in a
more distributed fashion risks of conflicts are bound to arise; this is discussed more fully
in section 2.6.

(b) Invariants that exist in the application state

The creation of derivative objects whose existence is linked to the original object man-
dates that derivatives must be deleted together with the original object. A mechanism
to establish and respect this dependent status should be implemented. Maintaining the
dependency in object metadata appears to be the most reasonable approach to do this.

In the case that a derivate object or value is retained and the original object is de-
stroyed, an alternative invariant is a causal relationship requiring the creation of all
derivative objects before the deletion of the original object.

(c) Performance results/figures

Typical platform sizes are in the range of 500 terabytes to several petabytes of data, with
update rates in the range of 1,000 to 20,000 updates per second. The availability of
sufficient resources for real time updates is the expectation, but as discussed in the diver-
gence section 2.7, the ability to maintain availability in the event of network partitions
or resource constraints is highly desirable. Certain serverless functions may be trivially
simple, while others, such as transcoding or compression, may be very computationally
intensive.

LightKone D2.1(v1.0), September 30, 2017, Page 34

CHAPTER 4. SCALITY

(d) Persistence

Generally speaking, the initial data will be preserved and derivative data will also need to
be persisted. It is assumed that this data will be persisted within the same storage model
as the initial data. In its simplest form, derivative data will be persisted as additional
metadata tags associated with the initial data. More sophisticated forms could include
multiple additional copies of data stored in the same or parallel containers on the system.

(e) Security threats

A number of security issues may arise:

• If the serverless function is not local to the platform storing the data, the data must
be protected in transit to and from the function’s execution point.

• Derivative works should, by definition, be protected with the same rights as the
original data, unless specifically changed. As an example of this, thumbnail pre-
views of protected works might be made publicly readable to allow anonymous
browsing for the purpose of discovery.

• In certain instances, the derivates or results of such functions might involve per-
sisting or publishing the results to entirely different systems which may or may not
have similar levels of security or data protection.

2.3 Detailed description

The application described in this use case is a new service, extending the Zenko Multi-
Cloud Controller, which will enable cloud-based applications to define lambda functions,
in order perform custom data transformations or data analysis at the path of ingestion.

The system will allow applications to publish custom lambda functions. A client ap-
plication will be able to publish a function by uploading the function’s code and specify-
ing which event will trigger it. When an operation triggers a function, it will be executed
at the edge, on the data involved with that operation. In the cases where the function’s
output is a value or data structure, local results will be aggregated to produce system-wide
results.

(a) Architecture

Figure 2.1 depicts a potential architecture design for the proposed system, containing the
different parts of the architecture and the data flow for a simple lambda function calcu-
lation. An architecture component is placed as an intermediate layer between the ap-
plication and the storage system, receiving client writes and executing lambda functions
when triggered. A second architecture component is used as an additional layer where
local function results are aggregated. Depending on the client’s computing capabilities,
these components can be situated either in the client or in points of presence between the
clients and the data center.

LightKone D2.1(v1.0), September 30, 2017, Page 35

CHAPTER 4. SCALITY

Figure 2.1: Basic Lambda Functionality.

(b) Edge computing requirement

The proposed system can benefit from the use of edge computing by:

• Distribution of compute load across many servers or “clouds”;

• Lambda functions are conceptually designed to scale with compute requirements;

• Accommodating different systems, providing different types of functionalities, and
allowing optimization of choices;

• Providing timely updates of data rather than more traditional batch-based methods.

Cloud environments, and especially those providing serverless function capabilities,
might well be considered for this usage, and might constitute a component in certain
situations. In many cases, unless the data is destined for a cloud environment, sending
the data to a remote node may not be practically feasible, either for reasons of cost and
bandwidth or data security. In certain cases, it would be pertinent to push the functionality
all the way to the client at the edge.

2.4 Data model
The data model is the one described in 4.1. Data are immutable while metadata are
mutable. Updating an existing object creates a new version.

There is no apparent need for updating more than one object atomically, as lambda
calculations are triggered after writes to objects are executed.

LightKone D2.1(v1.0), September 30, 2017, Page 36

CHAPTER 4. SCALITY

2.5 Detailed description of the computations
The computations in this use case are given by the specific lambda functions defined by
the system’s clients. A common requirement for various functions may be the aggrega-
tion of local results.

However, there will be resource limits bounding each local invocation. These limits
may include:

• Memory allocation range;

• Disk capacity usage; and

• Execution time.

Data-flow patterns in applications include writing data to the storage system. During
an update, when a function is triggered, data is transferred to the intermediate layers,
where the computation occurs. Finally, results for lambda function are stored in the
storage system, and can later be retrieved by client applications.

2.6 Conflicting operations and invariants
An invariant of the system is that lambda functions should be invoked when the specified
triggering conditions are true. Since these conditions are evaluated based on each update
locally, concurrent updates will generally not violate this invariant. These operations
would generally be idempotent in nature.

However, concurrent invocations of a lambda function may result to incorrect state at
the function’s results. An example would be performing cumulative statistical analysis
over a collection of data where the same piece of data is written by different sources.
Some conflicts could be avoided by the function’s definition or in some cases, the results
should mimic the approach applied to the initial data such as last-writer-wins or the use
of versioning to avoid loss of information.

2.7 Divergence and divergence control
Ideally, lambda functions will be triggered by writes or reads of data and will happen in or
near real time with no practical divergence. Most operations will not permit divergence
that is not controlled; this is especially true of mathematical analysis of inbound data.
Certainly, it is possible to allow the results of such calculations to diverge, but their
validity is no longer assured. In this case, the importance of the information must be
measured against the availability requirements of the system.

In the event of unavailability of lambda function resources, either due to resource
constraints, or due to network partitions, the most desirable behaviour would be to remain
available for writing data, if and only if it remains possible to queue and later execute
lambda functions. At any point in time that data will be stored without guarantees that
functional execution will occur, the system should be deemed unavailable for updates, or
generate alarms if the system is configured to accept the loss of information as preferable
to loss of availability.

LightKone D2.1(v1.0), September 30, 2017, Page 37

CHAPTER 4. SCALITY

2.8 Network partitions

Partitions can occur in the system, as lambda function calculations are performed in a
distributed way and global results are calculated by aggregating local partial results. In
case of a partition, the respectively partitioned nodes should be able to maintain a higher
degree of consistency, aggregating local results. Upon reconnection, partitions should
eventually propagate their partial results and converge.

2.9 Operational requirements

If public cloud serverless infrastructures are used, the compute capacity of those re-
sources is assumed practically unbounded. The budget allocated to consume those re-
sources may not be infinite, though, and as is the case for private infrastructure, the ability
to reduce or stop the actions of the lambda functions to retain availability for reading or
writing primary data is a highly desirable feature. The ability to control the point of exe-
cution of serverless functions is operationally interesting, allowing load to be distributed
intelligently based on resource availability or cost.

2.10 Security requirements

Access control to data is managed by access control lists. The access control mechanism
should be extended to include execution of lambda functions, since results can reveal
information about the input data. Therefore, only data objects which the author of the
lambda function has access to, should be included in the computations.

2.11 Data Protection requirements

Data protection generally remains in the realm of the end users who store data, implement
the specific lambda functions and define access rights. Ownership of derivate data should
respect rules associated with the original data so that lifecycle policies that might be
applied to expunge original data also act on derivative data. The most complex elements
might result from non-anonymized data stored within a particular set of assets that need
deletion. This could include image data, personal data, or logs of transactions, such as
web logs.

2.12 Implementation

Currently, Lambda functions are available on AWS, Google and Azure platforms. The
management of simultaneous access and federation of multiple environments is currently
not managed. The addition of the triggering of Lambda Functions at the edge would be a
great benefit for the solution. The possibility of performing certain functions on the edge
by clients should be considered. Containerized architectures that push these serverless
functions to the edge client devices or to network components with compute resources
are interesting options.

LightKone D2.1(v1.0), September 30, 2017, Page 38

CHAPTER 4. SCALITY

3 S3 local cache of central data

3.1 Overview of the use case
Scality’s storage system can be deployed across multiple, geographically distributed data
centers (DCs) in order to maintain data availability in case of DC or network failure.
Moreover, geo-replicating data in several data centers across the world improves latency
as client applications can connect to the DC closest to them.

Nevertheless, contacting the data center for each client operation incurs significant
latency and requires potentially costly bandwidth to synchronize data that may never be
used. Furthermore, cloud applications may become disconnected from any data center,
due to network partitions, and still need to make progress.

An extension to Scality’s storage system can be to enable local caching of data on
local sites. Caching data locally can improve latency and availability, and significantly
reduce the volume of data being transferred to the local site. Additionally, a very useful
option is to allow temporary-offline operation.

This scenario presents a number of challenges:

• Providing consistency guarantees for client applications operating on locally cached
data at a reasonable cost and at scale.

• Maintaining these guarantees when client-DC connections are interrupted, and pos-
sibly re-established with a different DC.

• Detecting cases where applications require access to large amounts of data, that
do not fit in the cache, and thus local caching is not sufficient. In these cases,
bypassing the cache and accessing the data center directly may be more efficient.

3.2 Current development
Scality currently has an open-source S3 server interface that functions locally and pro-
vides local indexing and local storage. This development would be a realistic starting
point for the edge cache components. Protocol and data management functionalities are
present, but no partial replication of data or indexes is currently supported in the available
solution.

(a) Conflicting operations

The reading of existing data creates no conflicts, but any modification or creation of
new data potentially creates conflicts both with the core platform and for other cache
instances. If there are no partitions, the system can make progress, but with potentially
unacceptable latency, especially in the event that multiple edge-cache instances are acting
on the same data set (i.e. bucket in S3 parlance). In order to provide a correct outcome,
eventually-consistent behaviour is expected to be required.

(b) Invariants that exist in the application state

The following invariants need to be maintained:

LightKone D2.1(v1.0), September 30, 2017, Page 39

CHAPTER 4. SCALITY

• Data indexes subscribed to locally must be consistent with central indexes.

• If the consistency invariant cannot be respected, it must be signalled. If liveliness
is preferred to consistency operations can then be allowed to continue.

• Data that is created or modified in more than one local cache must not destroy data
created elsewhere. A renaming or versioning policy should be preferred over a
last-writer-wins policy.

(c) Performance results/figures

The typical central platform will contain something in the range of 500 terabytes to sev-
eral petabytes of data, with billions to hundreds of billions of objects. A local platform
would realistically be limited to less than 10 terabyte of data, with network bandwidth
of no more than 1 gigabyte and latencies in the range of 10 to 200 milliseconds. The
subscription to the full central dataset is probably generally unrealistic and a subscrip-
tion of something in the range of 10 to 30% of the full data set is realistic in the remote
office/branch office situation. In a small office usage the subscription would likely be
limited to a single S3 bucket with millions of objects at most.

(d) Persistence

All data created locally must be persisted to the core platform in an eventually consistent
fashion. The local store is expected to provide some level of data protection such as Raid
or replication schemes. If the system operates in a partitioned mode where updates can-
not be propagated transactionally, the possibility exists that data could be lost without in
an untraceable fashion should the local site fail completely. Clearly establishing the guar-
antees of persistence in different degraded scenarios will need to be clearly documented
and communicated.

(e) Security threats

Security policies that are applicable centrally for users should be synchronized to the
remote (local) sites as well. Additionally, the creation of privileged users must only be
possible using the centrally located system’s rights management tools, to prevent rogue
privileged users from accessing, deleting or modifying data locally that would in the end
be propagated centrally. A useful feature would be a local infraction detection mechanism
that would prevent central synchronization until the system can be secured. This would
prevent a local breech or attack from being propagated globally.

(f) Current deployment details

The current technology is deployed in three different situations:

• The S3 server interface is deployed centrally on one site with a highly scalable
backend storage platform. It is accessible locally and provides required functional-
ities centrally. It may be accessed from remote sites over WAN links using standard
clients. No data is persisted locally in this situation.

LightKone D2.1(v1.0), September 30, 2017, Page 40

CHAPTER 4. SCALITY

• The S3 server interface is deployed in a distributed fashion across a limited number
of sites. Generally, it will be deployed across two or three sites. In this case, there
are two different synchronization options:

1. An active-active synchronous replication between sites providing a fully con-
sistent view across sites. For the case of interest here, this multi-site system
can be considered as a single central instance. If the central system becomes
partitioned, it follows a well-defined set of rules to avoid divergence.

2. An active-passive asynchronous replication between sites providing an eventually-
consistent view on the remote site after the synchronization has finished, but
the replication can be of a subset of data. This model can include subsets of
the data that synchronize in opposite directions, but for any given subset the
replication is uni-directional.

• The open source S3 server component Zenko.io is deployed locally on a site, but
today all indexes and data are stored locally. The Zenko framework allows for data
to be stored on remote public object storage sites, but no metadata synchronization
is performed and remote data is not cached locally today. Mechanisms are available
in this model to asynchronously replicate data to a remote site, but as in the case
above, the replication is strictly uni-directional.

3.3 Detailed description
The application described in this use case is an extension to Scality’s storage system,
implementing data caching at client machines. Client applications will read and write
data objects and their metadata, using the AWS S3 API.

Read operations performed by an application should fetch data objects to the cache,
so that subsequent operations can be executed there. Write operations should be executed
in the cache and propagated to the data center asynchronously in the background. Every
data object should eventually be stored and replicated at the data centers.

The system should also provide support for strongly consistent operations, enabling
clients to enforce consistency with the data center when necessary.

The system may include a number of mechanisms for making the cache more effi-
cient:

• Prefetching data objects to the client cache intelligently based on executed opera-
tions;

• Pushing data to the client cache based on search queries.

SwiftCloud [40], a cloud storage system that proposes an approach to access data
replicas at client machines and cloud servers, can provide a starting point for the system
described in this use case.

(a) Architecture

Figure 3.1 describes the architecture of this use case. The data storage system spans both
client nodes and data center storage servers. The core of the system consists of a set
of data storage servers that form data centers (DCs), and store replicas of the system’s

LightKone D2.1(v1.0), September 30, 2017, Page 41

http://www.zenko.io/

CHAPTER 4. SCALITY

Figure 3.1: Basic System Architecture.

objects. At the edge, client nodes cache a subset of the objects, in order to locally execute
reads and writes.

(b) Edge computing requirement

This implementation is a direct implementation of a heavy-edge design where the local
servers (remote to the central platform) perform as much of the work as possible. This
includes index lookups and maintenance as well as serving data that is stored locally.
In addition, the other use cases described previously can complement this usage, with
partial indexes being computed locally, and potentially providing local lambda function
calculations if sufficient infrastructure is available locally. It is expected that tens or
hundreds of such instances could be connected to the system. This scenario is especially
pertinent for branch office solution where the central data store has much more data than
can be stored locally. This is distinct from a small office, home office (SOHO) gateway
solution that replicates all its data to a central platform for the purpose of securing the
data in the event of a failure. The current Zenko open-source solution responds, at least
functionally, to those requirements.

3.4 Data model
The data model is the one described in UC1. Users read and update objects and their
metadata through S3 PUT/GET operations. Data are immutable, and updating an object
create a new version, while metadata such as user-defined tags or ACLs are mutable.

LightKone D2.1(v1.0), September 30, 2017, Page 42

CHAPTER 4. SCALITY

3.5 Detailed description of the computations
This use case concentrates on distribution and storage of data locally at the edge, rather
than computations at the edge. At the same time, computations performed locally at the
clients will be required to manage object metadata and maintain listings of objects in each
bucket. The generation of partial indexes at the edge should be both realistically attain-
able and desired. More sophisticated lambda functionality at the edge or deep-learning
inference-based operations, can certainly be considered based on the computational re-
sources available at the edge.

3.6 Conflicting operations and invariants
A number of conflicts are possible for such a system, for instance:

• Writers on distant sites can create the same object simultaneously;

• A writer creates an object locally while disconnected; however, the object was
created remotely during the partition;

• A reader attempts to read an object in the local index that has already been deleted
centrally;

• A reader retrieves a version that is different from the one advertised.

The extent to which these conflicts can occur will depend on the extent to which full
consistency is respected, at expense of affecting availability. Ideally, the consistency
should be tuneable, but with the invariant that no new data creation destroys existing
data. This can be assured by allowing versioning and renaming of data.

3.7 Divergence and divergence control
The data stored in the local cache will naturally lack data from the central system, since
the local cache cannot support all of the central storage. The indexes providing lists and
versions of all existing data are expected to be consistent with the central system, but
must support some level of divergence in the event of a network partition, if liveliness is
desired. The indexes would ideally remain synchronized with a time lag that is not more
than one order of magnitude more than the network’s round-trip latency. In the event of a
partition or other event that potentially causes divergence, information providing a clear
indication of the level of inconsistency would be very important. Pertinent metrics could
include:

• Fraction of the data in % that is not synchronized;

• The time since the last synchronization;

• The number of objects not yet included in the indexes.

When partitions are resolved the return to a consistent state would include bi-directional
updates and resolution of any conflicts using the established rules such as renaming,
creation of versions or last writer wins strategies.

LightKone D2.1(v1.0), September 30, 2017, Page 43

CHAPTER 4. SCALITY

3.8 Network partitions
Generally speaking, the most likely partitions is expected to occur between the central site
or sites and the more numerous remote sites. The central sites frequently have multiple
redundant links connecting them. Since the central site is considered to be authoritative,
a fully consistent view is only expected to be available when there is no partition with
the central site. In the event of a partition with the central site, it is important that local
sites can continue to make progress writing data and reading any data they have locally.
A potentially interesting extension would be the ability to interact between multiple local
sites in order to obtain data that they have cached, or to repopulate an out-of-date index
in the event of a partition.

3.9 Operational requirements
The centrally located components are deployed as described, either in a consistent fashion
or using active-passive replication; eventually-consistent synchronization is not currently
supported on the central system, but it remains an interesting alternative to the methods
permitted today. The remote clients can potentially be little more than a Docker container
instance with a limited amount of storage, as little as a few tens or hundreds of gigabytes.
They can be numerous, as in the case of branch office installations, where there might be
up to thousands of instances. The volumes of data stored centrally can reach billions or
hundreds of billions of objects on multi-petabyte platforms. In the case of a very large
multi-billion object platform, the ability to support indexes of partial subsets of the full
dataset, a single bucket or container or collection of them would be the most reasonable
subset to support, so that remote instances need not carry indexes of multiple billions of
objects. Even a single bucket can contain around a billion objects, but more common
numbers for buckets are millions of objects.

3.10 Security requirements
The access control mechanism should be extended for data residing in local caches. ACL
propagation may be an issue. Clients should be able to use strongly consistent operations
in order to enforce changes to the ACLs to invalidate ACLs in other clients caches. Alter-
native more weakly consistent methods for ACL propagation are under study and could
prove useful in this context.

3.11 Data protection requirements
Because the system is generally operated in the context of a public or private cloud-
storage-as-a-service offering, the management of individual data protection primarily
falls on the users themselves. The end users of the system have the ability to change
access controls for the data in such a way that it can be private or entirely public, the
system is accountable for protecting the data as configured by the users. It is however
important to be able to distinguish ownership for data in such a way that the data can be
explicitly deleted or secured if required. Tagging of data by its origin country or other
pertinent tags having a bearing on data protection should be possible. In the specific case
of partial replicas on remote systems, it could become possible to require partial indexing

LightKone D2.1(v1.0), September 30, 2017, Page 44

CHAPTER 4. SCALITY

of data based on geographical criteria, should constraints of data sovereignty be required.
Requests for such controls have been enumerated by customers and the functionality
would permit a definitive response should this be required on a platform.

3.12 Implementation
The most realistic option for the implementation of the protocol component of this func-
tionality is to build on the open source components provided by Scality’s Zenko platform.
The server is available in the form of Docker containers or in source code form on github
S3 server. Interesting development work already underway in the SyncFree SwiftCloud
project, which provides many of the required eventually consistent synchronization prin-
ciples mentioned here.

LightKone D2.1(v1.0), September 30, 2017, Page 45

https://github.com/scality/S3
https://github.com/SyncFree/SwiftCloud

CHAPTER 4. SCALITY

LightKone D2.1(v1.0), September 30, 2017, Page 46

Chapter 5

Stritzinger

1 No-Stop RFID

1.1 Overview of the use case
A transport system in industrial manufacturing is any means of handling transport of
materials and partial products between processing stations. These consist of all kinds of
conveyor belts, turn tables, self-driving carts on rails as well as free-driving, and human
pushed carts. Common among them is some means of more or less flexible movement of
a workpiece carrier and some way to identify the workpiece and keep information about
necessary processing steps, progress and measurement data, together with other logistics
data. Mostly, a form of read-only or writable RFID tag is used for this. The RFID tag
can be mounted on the workpiece carrier or on the product itself [22].

While the product is traveling along the transport system from processing station 1.1
to processing station, data associated with the workpiece carrier is used to decide what
processing step needs to be taken next and to route the product towards a station that can
do that step. When processing is done, this data is updated accordingly, e.g. steps done,
quality test result and calibration information 1.1.

RFID tags are used to at least associate the data with a product in the making and
often also to store the information itself. In the case where this data is stored on the
RFID tag itself, the time needed to read and write these RFID tags over and over again is
a substantial overhead in manufacturing that adds to the cost.

The No-Stop RFID system we are planning to build will implement a distributed
cache of the RFID contents. By doing this we can avoid this time loss. Ideally, we can
achieve all RFID communication with the tag in drive by mode without stopping.

The processing stations, transport system, and decision making systems will commu-
nicate only with this distributed cache instead of directly with the RFID tag, and can thus
observe much reduced latency. Consequently, the RFID tag itself is only used as token
to detect physical location of the workpiece carrier and its non-volatile storage acts as
backup when in sync with the cache.

The distributed cache will be integrated in the embedded systems that are mounted
along the transport system and contain the RFID antenna needed to communicate with
the RFID tags over short distances (for HF tags 5-30mm). These embedded systems are
networked with Ethernet connections along the transport system forming a mesh net-
work 1.3.

47

CHAPTER 5. STRITZINGER

Processing
Station
Control

Conveyor

Control logic

Industrial Protocols

RFID
Antenna

RFID
Cache

Sensor Sensor

Actuator

Workpiece
Carrier with
Product and

RFID Tag

Node
Network

Figure 1.1: Node at Processing Station

Routing decision making will be done on these embedded systems directly. Process-
ing stations are connected to a local embedded node, and communicate only with the
local cache. Updates to the cache, either from reading from the tag or from writes from
processing stations, are to be distributed with the necessary metadata over a gossip pro-
tocol (communicating only with neighbours) to all nodes in the network. Whenever a
RFID tag is in communication distance with an antenna, data in the local cache is synced
in both directions with data on the tag.

Since we have a large network of embedded devices and no server or cloud compo-
nents at all this is a light edge use case.

The challenge is to keep eventual consistency between all the caches and the RFID tag
contents. There are strict requirements to always detect when a cache is not yet consistent
when a RFID tag is located at an antenna. Causal ordering needs to be provided in case
of conflicting updates, and failure to do so needs to be always detected and flagged as an
error. While the network is mainly reliable because it is mostly wired, we need to deal
with hardware failures nonetheless, that can cause network partitions. Assembly lines
are often maintained and changed while parts of them need to keep working. This results
in partial network outages and change of topology, which needs to be dealt with.

The current RFID systems work as isolated systems. There is a short-term non-
distributed cache to make data accessible during glitches in radio accessibility. It also
speeds up re-reads of the same data, and supports a pre-fetch operation that fills the
cache, when no other operations are done. A configurable short while after the RFID tag

LightKone D2.1(v1.0), September 30, 2017, Page 48

CHAPTER 5. STRITZINGER

NodeNodeNodeNode

NodeNode

Node

Node

Figure 1.2: Part of a assembly line

is not accessible, the cache gets deleted, since the tag could have been at another reader
in the meantime.

Other application aspects are distributed over several nodes (e.g. IEC61499 dis-
tributed PLC subsystem for user programmability). For the other distributed aspects, we
use Erlang’s transparent distribution protocol. There are two test installations on small
industrial transport systems (small meaning dimensions of < 10m) with about 15 nodes
each.

We have a current hardware prototype RFID system that runs Erlang directly on a
small embedded device, which is being tested in an industrial environment at Boschrexroth.
These embedded devices use the software stack of GRiSP (www.grisp.org), running Er-
lang very close to the hardware on a hard real-time unikernel system.

Development of the new system has not begun yet, since Stritzinger has only been a
partner in LightKone for 2 weeks.

(a) Conflicting operations

In the non-distributed system usually no conflicts occur, since physical presence of a
RFID is required at one of the antennas (associated with a processing station) during a
complete transaction.

(b) Invariants that exist in the application state

The non-distributed cache we now have is only valid, while the RFID tag is present in
front of the antenna. It only exists to speed up duplicate reads or read/modify/write
operations of blocks of data.

Valid data in the cache needs to be identical with the data on the RFID tag while it
is present at the antenna. Writes are immediately validated in sync with the operation.
Reads of data not present in the cache result in immediate read from the RFID tag.

(c) Performance results/figures

The current, unoptimized system can transfer about 200Byte/s to and from the RFID tag.
Currently we are working on improving this number to make the proposed distributed
system work better, and we plan to reach data transmission rates in the order of 1KiB/s.
When data is in the cache already, latency towards the application is so low it does not
matter anymore.

LightKone D2.1(v1.0), September 30, 2017, Page 49

CHAPTER 5. STRITZINGER

NodeNodeNodeNode

NodeNode

Node

Node

Figure 1.3: Network along a assembly line

The usefulness of a non-distributed cache is very limited and was also meant as a first
stepping stone towards a distributed cache.

(d) Persistence

In the current system data in the cache is only kept for a maximum of a few seconds after
a tag physically leaves the antenna to avoid the possibility that in the meantime a tag has
been written at another antenna. Since the caches do not communicate with each other in
the non-distributed case, it would result in incorrect data in the cache.

The only long-term persistence is on the RFID tag.

(e) Security threats

The environment is currently considered to be shielded from threats. However, in prac-
tice this is no longer true, but the general level of security awareness in manufacturing
has been low in the past. Eventually moving towards an encrypted and authenticated
communication between nodes will improve shielding of all application areas.

(f) Current deployment details

The RFID readers are small embedded systems, mounted alongside the industrial trans-
port system. The physical environment can be harsh industrial conditions. These embed-
ded systems are the nodes in our network.

Currently, we have access to two demo transport systems with 15 nodes each at
Boschrexroth and Zema) developed in the SmartF-IT research project.[13] These are
considered small demo systems. However, the capacity for very large factories are up to
1,000 nodes. Each node is capable of about 200 MIPS and has 64 MB RAM. Communi-
cation between machines is currently a mesh network of 100 Mbit Ethernet. Every node
has three network connectors, linking it to neighbouring nodes. The network graph has a
large diameter requiring many hops. In many cases, network connections go in parallel
with physical transport system (e.g. the conveyor belt).

1.2 Detailed description
From our experience we know that there are two main schools regarding the use of RFID
tags in this setting: one only uses a unique ID on the tag and stores everything in a

LightKone D2.1(v1.0), September 30, 2017, Page 50

CHAPTER 5. STRITZINGER

database. The other keeps all relevant data on the tag itself, and updates it as it goes
through the processing steps. Both approaches have advantages and disadvantages.

The decentral approach, that keeps all data on the RFID tags, can work without a
network. It is the older approach, since until a decade ago there was no or very limited
networking of processing station along a conveyor. Since all data transfer is done locally,
it is very robust against outages. However, read/write speed of RFID systems are very
slow, resulting in the need to stop in front of the antennas and wait until the data transfer
is done.

The centralised approach, that keeps all data in a central database, can speed up
read/write operations given sufficient network and database performance. The price for
this is a single points of failure (the database server) for costly outages of the whole
factory.

We seek a middle ground between these two approaches by developing a distributed
cache of the contents of all RFIDs deployed on an assembly line. This avoids costly
waiting time of workpiece carriers in front of antennas along the transport system.

By distributing the cache, we can read and write data for a RFID tag whenever it
drives by or is stopped at any antenna in the system. Writing can be done to the cache
also when a tag is no longer at a local antenna, e.g. when it’s leaving or traveling between
processing stations. Before a write can be done, the writer needs to obtain a handle which
needs to stay active until all the writes are done, and afterwards needs to be closed. This
will be presented to the users like a file operation with open/read/write/close semantic
which can also be seen as a transaction. When the tag is present at another station where
the written data is needed, the distributed cache needs to ensure that the data in the cache
is consistent with the last closed transaction on the tag. To achieve this, a transaction id
needs to be reliably written to the tag during or after each transaction.

When a local cache stays behind the RFID tag transaction id for a longer time, an error
condition is signalled to the operators (e.g. red or yellow lamp) and manual intervention
is required. Since normally the data along the network should travel much faster than the
physical workpiece carriers, this should only happen when a carrier is transported across
a network partition border or during system failures.

Every time a RFID tag passes a reader, as much data as possible is written or read
without stopping to closer match the RFID tag and the cache. Some mechanism needs
to be developed to quickly determine what transactions were successfully finished on the
tag, as it can leave the radio field with partial writes of an unknown status.

Smaller sized database nodes can be optionally added in a distributed way, to give
increased persistence of data which is not on the RFID tag in case of power outages.

(a) Conflicting operations

Reads from the cache need to make sure to always return the most recent writes. Transac-
tions group related reads and writes to be executed atomically. Processing stations access
the copies of the cache close to the nodes they are connected to. Transactions need to be
applied in causal ordering and cannot be rolled back.

In the non-distributed system, conflicts are avoided since physical presence is re-
quired at one of the antennas associated with a processing station during a whole trans-
action.

This model of operation needs to be emulated by the distributed cache. The limitation

LightKone D2.1(v1.0), September 30, 2017, Page 51

CHAPTER 5. STRITZINGER

is loosened in the way that the RFID tag needs only be shortly present at an antenna
associated with a processing station to identify it and possibly write a transaction id if it
is to be written.

In normal operation, a causal ordering between transactions at different stations is
ensured by physical presence at the station. Based on an error in the processing station
applications, there could be conflicting writes with no detectable causality. It is sufficient
to flag these errors when detected. If possible, the conflicting writes should be prevented
right away, signalling an error to at least one conflicting writer. If a conflict can only be
detected after the fact, the workpiece carrier should flag an error, and be stopped as soon
as arriving at a station where it is possible.

It is very important that these inconsistencies are detected in all cases, since pro-
gressing in the face of inconsistent data can result in broken products or even in physical
damage to the machinery!

Another conflict might arise between RFID tag transaction id and cache transaction id
when at an antenna. When the cache is ahead in transactions compared to the RFID tag,
the new transaction id needs to be reliably written to the tag prior to any other operation.
When the cache is behind in transactions compared to the RFID tag, any operation needs
to be delayed until the cache has caught up. After a timeout, an error needs to be indicated
at the station, since this conflict cannot be resolved until either the cause for the cache
being behind is fixed (e.g. network partition) or the problematic palette needs to be taken
away and manually inspected like in the case of production failures detected. In almost all
factories there are repair stations for this. Instead of manually taking away the workpiece
carrier, it can also be transported towards a repair station, while this inconsistency exists.

Automatic error flagging, which results in skipping all processing stations and driv-
ing towards a repair station, could also result in the tag being consistent again when at
another antenna. Then the problem with the tag can be considered fixed and the error
condition cleared. This is very robust to partial network failures, since observed be-
haviours would be that workpiece carriers just drive through a station skipping it when it
is disconnected from the network. It is even possible, that the RFID tag is written fully
at another station, and being fully in sync with the cache, which should be detectable by
having a special flag in the tag memory, which is set every time the tag is fully synced.
Then a partitioned station could read the whole tag memory and still operate consistently,
only with degraded performance. Through this mechanism, cache information can travel
from one network partition to another.

When the system is aware of the physical transport topology, this can be improved
by stopping and writing tags before they leave network partitions, avoiding this kind of
error condition altogether. Knowledge of transport topology needs to be optional though,
since it cannot always be provided. Even when topology is known, workers can move
palettes from one network partition to another.

(b) Invariants and other rules that govern the system

• RFIDs have an id that is globally unique, which is identical to the id for its dis-
tributed cache.

• Caches for different RFID tags (different Id) do not share any data with each other.

• Transaction ids for a single RFID are linearly ordered.

LightKone D2.1(v1.0), September 30, 2017, Page 52

CHAPTER 5. STRITZINGER

• Transactions associated with an id are either open or closed.

• Open transactions are bound to one cache instance and cannot be migrated to work
on their caches (all transaction operations open, read, write and close work only
against a single cache instance)

• For a RFID tag that is physically present at a reader, when the transaction id on the
tag is the same as the one in the local cache, the following holds:

– any cache byte that is marked as ”valid” must have the identical values on
cache and RFID tag

– any cache byte that is not marked ”invalid” (i.e. ”valid”, ”dirty” or ”flushed”)
must have the value of the last write in the transaction id.

• A new transaction id can only be obtained, when the old transaction is closed and
this is known to the local cache.

• A new open transaction id can only be obtained when the RFID tag is physically
present and the cache transaction id is either the same or higher (by the ordering
relation) than the one on the RFID tag. The cache can be ahead of the tag, but not
the other way around.

• The new transaction id is higher by the ordering relation than the old transaction id
in the cache.

• Writing requires to hold an open transaction id bound to the local cache.

• Reading can be done anytime, but the values might not reflect the last write. To
ensure reads to read the last write, an open transaction id needs to be obtained also.
If a transaction id is opened only for reading, it can stay the same value and need
not be a higher one.

• To avoid undetectable data loss, new transaction ids need to be written safely to the
RFID tag. This makes it necessary that a new transaction id can only be obtained
while the tag is in communication distance of a local antenna (”present” state).

• So far, no known pre-existing cache coherence protocol was selected. Due to
the special nature of a cache with moving ”memory” (or a database with mov-
ing ”disk”) a new protocol might be needed. The cache data including all metadata
needs to be distributed to all other nodes, since it cannot always be predicted where
the RFID tag will show up next.

• If a transaction cannot be obtained for any of the reasons above, it will wait with
an optional timeout, until all necessary conditions are true.

• There is also an operation to open a read or read/write transaction for the next RFID
tag that is detected at the antenna. Such an operation would return the RFID id and
an open transaction id. This allows transaction start on drive by.

LightKone D2.1(v1.0), September 30, 2017, Page 53

CHAPTER 5. STRITZINGER

(c) Expected performance

The only performance that matters here is factory throughput.
Data in all caches should be able to catch up with the physical tag location almost

always. If not, the tag has to wait before the next processing station until the data caught
up with it. This reduces factory throughput and therefore waiting needs to be minimized,
best eliminated.

Minimum time between processing stations depends on transport speed and distance
between stations and is around 1 to 10 seconds. Conveyor speed for conventional systems
gets up to 20m/min, standard is 12m/min.

The system needs to scale to a size of up to 1,000 nodes without degrading perfor-
mance.

(d) Persistence

All cache and metadata needs to stay on all nodes indefinitely.
If a workpiece carrier is removed permanently from the factory, it should be booked

out of the system. Otherwise caches that contain only bytes that are either invalid or valid
could be removed after a while without data loss.

Caches which contain dirty and flushed data need to be held on to for a long time,
since it is not uncommon that workpiece carriers are taken off the system in the case of a
throughput problem.

Recommended practice will be to use special exit readers, which make sure all data is
flushed and validated on the RFID tag before removing them. The same goes, if palettes
can regularly pass out of the cached system into a part of the assembly lines which do not
have caches.

Because normally caches would be flushed and validated when workpiece carriers are
removed, the systems need to hold on to any caches that are dirty or only flushed, since
it needs to make sure no data is lost.

There will also be a procedure to manually remove RFID tags from the caches in
case a RFID chip breaks. Knowing the time how long the RFID tag has not been seen by
any antenna is an important information to find a tag to remove, so it should be kept if
possible.

For additional protection against power outages, nonvolatile storage can be added to
the system (e.g. a small server running specialized software or simply a NAS connected
to one of the nodes). This can be just log storage without quick access, since it will be
used mainly for backup in case of whole factory power outages.

To shut down an assembly line in a controlled way, the caches should have a special
shutdown mode which flushes all caches whenever possible (stopping workpiece carriers
where it can). It needs to give a signal whenever all data is persisted nonvolatile on RFID
tags.

(e) Architecture

The RFID reader nodes that contain the caches are networked in mesh topology. Network
diameter is large and the topology partly mirrors the physical transport topology. The
reader nodes are small embedded systems all alike. Since assembly lines can get quite
long, this can result in a high diameter network. Each node can be connected to up

LightKone D2.1(v1.0), September 30, 2017, Page 54

CHAPTER 5. STRITZINGER

to three neighbouring nodes. We will implement a link state routing protocol allowing
shortest path routing, but want to limit the cache synchronisation to nearest neighbour
communication.

Figure 1.4: Network topology example

For other applications we plan to have shortest path routing between the nodes using
IS-IS [27] link state routing protocol, which has some internal similarity with the gossip
protocols discussed in LightKone.

For the RFID caches however, we want to limit ourselves to nearest neighbour trans-
mission of the cache operation, to keep network traffic and routing effort down. We do
not expect many random outages (this would impair other system functionality greatly
and therefore always needs to be avoided). What can happen is the occasional failure of
the node hardware, which will be replaced soon.

What will happen regularly is that different sized subsets of the nodes are taken down
for maintenance or factory rebuilding. It is important that the rest of the assembly line
keeps working as expected, while parts of it are changed or being taken down.

(f) Edge computing requirement

Our edge nodes make local decisions about routing the workpiece carriers to one of the
next processing steps. These decisions are based on the data associated with the RFID
tag, sensor input and communication with a processing station. This decentralised deci-
sion making has been the traditional way factories were and are still built. The decisions
need to be made in real time with hard real-time constraints, and therefore need to be
made locally. It also reduces wiring cost, when sensors, actuators, processing stations,
and RFID antennas are only wired to a local node. In addition, there are no single points
of failure for the whole assembly line this way. Therefore, we need to have the computa-
tion at the edge.

In manufacturing RFID systems, there are two major approaches: keeping data cen-
tralized on a server using only the unique id of the tags to get data; or always keep all
necessary data on the RFID tag and be completely independent of the server.

The centralized approach has the disadvantage of a single point of failure for the
whole factory for the server and the network infrastructure between the assembly line and
the server. Also, latency occurs when getting the data from the server to the processing
station and back. Reliable writes need to be done synchronously on the server, which
increases latency. Also, the server is an added cost factor which can be noticeable when
a reliably database server cluster needs to be purchased and maintained.

LightKone D2.1(v1.0), September 30, 2017, Page 55

CHAPTER 5. STRITZINGER

The traditional decentralized way keeps all data on the RFID tags, making a server
for this data unnecessary. Since every workpiece carrier has the essential manufacturing
information on its attached RFID tag, operation is independent of any central infrastruc-
ture. Unfortunately, latency does also occur due to the slow read/write operations to the
RFID which need to be done in sync. It can be more cost effective than the centralized
since it does not need all the server infrastructure and is quite resilient to outages.

By adding a distributed cache, we can reduce the latency greatly compared to both the
centralized solution and the traditional decentralized solution. Every node has in the ideal
case all the data already available once it has ever been read or written from the RFID
tag at another station. At the same time, we plan to remain as robust as the traditional
decentralized way, and have no single point of failure.

1.3 Data model
The data model, that forms the basis of all functionality, is just arbitrary mutable ad-
dressed bytes on the RFID tag. Addresses are an integer offset starting at 0 and going
up to the size of the RFID tag minus 1. For each byte, some state metadata is kept for
helping the cache loading and flushing 1.6.

It is essential, that the distributed cache works reliably with the basic data model of
bytes, since some users will want to implement their own data structures on top if it.

The data is generated and updated by processing stations which are communicating
with their local edge node. It is fully replicated together with the metadata. The updates
to the data need to preserve causal ordering. We can work with eventual consistency, but
we need to always detect, if a local cache is not yet consistent when a RFID is present at
a antenna. If it’s not consistent yet, the workpiece carrier needs to wait at the antenna or
the processing station until it is.

We will need to provide transactions that provide atomicity, consistency (eventual)
and isolation. Whenever a RFID tag is in reach of a antenna and if the local cache has
caught up with all updates, we try to update the data on the RFID. For all RFID tags that
are fully in sync with their distributed cache we get durability also.

Cache data is flooded to all participating nodes. Since the RFID tags are on the
palettes which get reused, expiry needs to be very slow (workpiece carriers removed
permanently from the system without telling the system).

In addition to the ”just bytes” data model, we can provide higher level structures as a
convenience library, which is useful mainly if we can provide better properties for these
higher level data structures.

Possibly useful data structures on the RFID:
Data stored on RFID

• Key/Value mapping with the keys are fixed for a whole production run (after which
the RFID tag is erased to be reused) being distributable as meta-data to the caches
and only the values are stored at offsets and sizes and types that can be part of the
meta-data. The other data structures in this list could be structured types stored at
these keys.

• Push-only stack of fixed maximum size. Read operations should be provided at
offsets relative to the top of the stack.

LightKone D2.1(v1.0), September 30, 2017, Page 56

CHAPTER 5. STRITZINGER

– Generalization: also allow mutating writes relative to the top of the stack.

– Generalization: also allow popping elements off the stack again.

• Processing steps necessary for a product with completion information 1.5

Start

A

B C D

E

F

End

Figure 1.5: Example partial ordering of processing steps

Processing steps could be seen as a partial ordering of available steps out of a set
of available steps for a factory. Not all steps need to be taken in order in production
giving some flexibility in machine utilization.

Which steps are completed also needs to be stored on the tags can be seen as a
portion of the partial order which is limited to the ordering of the processing steps
allowed.

1.4 Detailed description of the computations
Computation with the data associated with a RFID tag is programmable by the users.
These computations take the data in the cache, sensors in the physical area as inputs,
communicate with local processing stations if there (input and output) and make deci-
sions resulting in outputs to actuators that influence the transport system. These compu-
tations have hard or soft real-time requirements.

Besides these user defined arbitrary computation, there is the state model of the
caches as shown in 1.6:

• invalid: only bytes that have never read or written for a certain cache are invalid.

• valid: only bytes in the cache that are guaranteed to be equal to their RFID counter-
part are valid. They get only valid by reading their value from the RFID tag either
a first time read or a validation read after a write.

LightKone D2.1(v1.0), September 30, 2017, Page 57

CHAPTER 5. STRITZINGER

invalid

valid

dirty

flushed

API
write

API
write

RFID
read

RFID
write

RFID
validate
error

RFID
validate

ok

Figure 1.6: Cache state transitions

• dirty: bytes written through the API by some computation are marked as dirty.
Valid bytes that are unchanged can remain valid. Bytes that are dirty need to get
flushed to the RFID tag as soon as possible. However, most RFID tags can only be
read and written in blocks so we might need to read a block to make sure none of
the bytes are invalid before writing them back to the RFID tag.

• flushed: Bytes that we have tried to write to the RFID tag. We cannot be sure that
blocks written to the RFID tag made it into non-volatile memory there (it could
have lost power after receiving a block but before saving it by leaving the antenna
field which powers it over the air). Therefore, we read bytes that are marked flushed
back from the RFID tag and validate if they are identical with the cache contents.
If they are identical they are marked valid if not they go back to dirty to trigger
another write attempt later.

For the partially ordered processing steps we need to provide the following function-
ality:

• Encode the partial order in a compact way and write it to the cache. This is usually
done at a starting point in a assembly line when available empty workpiece carriers
get associated with a new product to build. All processing steps are marked as not
done yet.

• Get the set of possible next processing steps taking in regard the set of processing
steps ”done” and the partial order. There is always at least one step available for an
active product in making (after the last step the workpiece carrier is empty again
and can be reused).

• Mark a processing step as “done”.

1.5 Conflicting operations
In normal operation, conflicting operations can be avoided by causal ordering of transac-
tions. This causal ordering can be ensured by only starting a transaction when the RFID

LightKone D2.1(v1.0), September 30, 2017, Page 58

CHAPTER 5. STRITZINGER

is in range of the local antenna. When the transactions are all finished (closed) in timely
order, and the cache updates propagate fast enough, conflicting operations on the data in
the cache can be avoided. However, too long running (or hung) transactions as well as
network partitions can result in conflicting operations, that can not be causally ordered
anymore.

The cases where there are confliction operations that lead to a incorrect state must be
very rare since they need manual resolution by a human, if they occur. There are several
mechanisms planned to prevent such incorrect state, therefore multiple problems need to
occur at the same time to result in unresolvable incorrect states.

Most important is that all conflicting operations are detected and flagged as error.

1.6 Divergence and divergence control
There are two kinds of divergence possibility in the system:

• Local cache transaction id is behind the transaction id on the RFID tag
The workpiece carrier needs to wait until the local cache caught up. If the wait
time is too long (configurable) there are several possibilities to resolve the problem

– Error signals are triggered locally, calling a human to attention to remove
the blocking workpice carrier and resolve the problem at a repair station by
inspection of the partial product.

– An error is flagged on the RFID tag causing it to travel to the next repair
station by itself.

– The workpiece carrier is sent on its way without processing, and travels on
the assembly line until the problem fixes itself by reaching a cache that is up
to date, e.g. in another network partion. Care needs to be taken that workpice
carriers are not traveling forever without resolving the problem by e.g. a error
counter on the RFID tag with a threshold that gets reset every time when some
progress is made.

• Data content on the RFID tag is not in sync with the cache when crossing system
or network partition borders.
An assembly line can be partially equiped with No-Stop RFID system and par-
tially have traditional RFID systems (e.g. during a upgrade of the factory or it’s
only worthwhile to upgrade part of the factory). In this case the antennas that are
at places where tags can leave the distributed cache areas need to be configured
specialy and be able to stop the workpiece carrier, and make sure all the data is
flushed and validated to the RFID tag.
The same can be done in the case of network partitions, but only if the physical
and network topology and ther relationship of the two are known. Smart transport
systems, which are automatically routing workpiece carriers, have this knowledge.
When we are able to write all cache contents to the RFID when leaving a network
partition, we can effectively bridge the air gap between the partitioned systems.

When the distributed cache is offline, all the data always need to be written to the
RFID and the system degrades to the old non distributed system but is still able to make
progress producing products.

LightKone D2.1(v1.0), September 30, 2017, Page 59

CHAPTER 5. STRITZINGER

1.7 Network partitions
When there are network partitions, it is a requirement that all cached data is written back
to the RFID when the tag leaves the physical area of the partition.

If this cannot be achieved, divergence of cache content needs to always be detected
at the RFID location. After an application specific timeout waiting for convergence, this
can be flagged as an error, which needs human intervention.

People working on the transport system might not be aware of a network partition
and pick up palettes from one partition and insert them in another partition, when their
content is not yet consistent with the cache. Normally, there are stations where palettes
can be removed safely (writing all data to the RFID tag before). But especially when the
system is not in optimal operating state and palettes back up, human error while trying to
fix the problem can lead to such problems.

1.8 Operational requirements
The node characteristics can be seen in table 1.1. We need to be able to store all RFID
caches on each node. With up to 8kiB RFID memory and up to 2,500 RFID tags per
assembly line active, we have a 20 MB raw storage need. It would be good if the whole
cache would fit in 50MB of RAM including metadata and distribution housekeeping.

Data transmission to/from RFID tags will be in the order of 1KiB/s (current system
is much slower with about 200Byte/s but this is unoptimized).

Table 1.1: Node Characteristics
Scale Large Assembly line up to 1,000 nodes
CPU 200 MHz PowerPC
Firmware running GRiSP (Erlang on RTEMS)
RAM Size 256MiB
”Disk” NAND Flash on PCB with filesystem (can’t write often)
Network 100 Mbit Ethernet, 3 links

The tags used by the customer are conforming to [25], [23] and [24] and have FRAM
memory (with 1012 times read/write endurance) to allow the high number of write cycles
required by the application domain [20]. Example of a RFID tag used in the system is
MB89R112 [19]. Characteristics can be found in 1.2.

Table 1.2: RFID Properties
Storage 2..8 KiB per Tag
Block Size 16 or 32 Bytes
I/O Speed drive by read+write+verify 25..150 Bytes
Write guarantee Only when read back
Active tag count 500 .. 2,500 per assembly line

1.9 Data protection requirements
None of the data stored in the system are related to persons. Therefore, we expect no data
privacy issues.

LightKone D2.1(v1.0), September 30, 2017, Page 60

CHAPTER 5. STRITZINGER

1.10 Implementation
We plan to implement the cache in the programming language Erlang and build on top
of the GRiSP software system (running Erlang close to the hardware using RTEMS em-
bedded operating system) which we already used for the predecessor system.

For other functionality, we use the transparent Erlang distribution protocol and plan
to use it for the communication needed for the distributed cache too. As soon as the
extensions we are working on in WP3 are available for the distribution protocol, we want
to build on top of these extensions.

Possible usage of Lasp or Antidote (or what will evolve from it in the project) will be
researched. We will build on top of any useful Erlang libraries or applications that are
developed in LightKone.

2 Smart metering gateways

2.1 Overview of the use case
Digitization of utility metering is a growing market that promises to bring cost savings
and provides important data for efficient resource usage, and are an important stepping
stone towards smart grids [12]. Metering has always been an important component of
electrical grids, historically used for billing purposes, and it’s increasingly being adopted
for water grids, hot water grids, gas grids, etc. Therefore, smart grids, digitally enabled,
self- balancing electrical grids, are becoming an important building block for efficient
renewable energy usage.

Smart sensors with a fine granularity is an important data source within smart util-
ity metering. The higher quality and finer granularity, the better decisions can be made
which impact the bottom line, cost effectiveness and environmental impact. The easiest
way to reach the metering devices is sub gigahertz radio protocols, because of their range
and them being license free frequencies[33]. In Europe, Meter-Bus (M-Bus)[1] is the
standardized protocol that is supported by many metering device manufacturers, such as
Siemens and Deutsche Telekom1. The protocol was initially designed for drive-by or
walk-by solutions to read meters in a house from the street. Due to its limitations and
costs, a wireless extension, Wireless M-Bus (WM-Bus) [2], has been standardized to sup-
port smarter ways for metering data collection through wireless gateways. Our customers
are increasingly demanding gateways which are connected to mobile and wired Internet.
This allows a much finer grained continuous data collection needed for the new big data
applications.

The workflow in this use case is simple (see Figure 2.1): digital meters are placed
throughout properties, measuring physical processes such as electricity or water con-
sumption. The meters then transmit data by wireless to gateways which collect and ag-
gregate the data to be transmitted into the cloud (for further processing and presentation).

The gateways are small embedded devices that are distributed evenly over residential
and industrial areas and are connected via mobile or wired Internet. They can also com-
municate with each other via WM-Bus or other radio protocols. Gateways are in charge

1The OMS Group lists several other prominent companies: http://oms-group.org/en/about-oms/
members/

LightKone D2.1(v1.0), September 30, 2017, Page 61

http://oms-group.org/en/about-oms/members/
http://oms-group.org/en/about-oms/members/

CHAPTER 5. STRITZINGER

of the main computations and operations on data, such as data thinning by aggregation to
save bandwidth, and redundant data transmission routing (between the gateways and to-
wards the server) through mobile and wired Internet connections for reliability. Gateways
can also take part (along with the cloud) in decision making for smart grid applications,
e.g. switching on batteries, controlling electric car charging and other flexible energy
sinks. Consequently, this use case can span the whole spectrum from light edge to heavy
edge, with more emphasis on light edge, since future applications can involve smart grid
decision making right at the edge without server involvement.

Data loss and duplication are two main challenges in the use case. While it is suffi-
cient that data eventually arrives at the server, data loss must be avoided to ensure correct
data analysis and avoid under- or over-billing which is critical in this business. Given that,
enough gateways should be installed to cover all the meters in the region by a required
redundancy factor. This likely causes multiple gateways overlaps with meters which can
lead to duplication of collected data.

2.2 Current development
Although this project is still in its very early stages at Stritzinger — having only recently
entered the smart metering gateway market — the project has been given high priority be-
cause of being in contact with a strategic European customer. The customer is operating
the metering infrastructure and is in need of a communication network interfacing with
the actual meters. Stritzinger is also planning to use the technology to build smart grid
applications with decision making at the edge. To this end, we are also in communication
with another potential customer who is in the smart grid and energy trading business.

In-house, we have been developing our own embedded systems and smart Internet of
Things (IoT) devices, and have extensive experience with networking and cloud services.
The smart metering use case is a natural extension of those strengths, but raises the bar
when it comes to handling of data and computations at the edge.

2.3 Detailed description

(a) Architecture

The architecture of a smart metering network can be divided into three layers; the sensor
layer, the gateway layer and the Internet layer. Sensors are positioned at the edge and
are collecting data, such as electricity or gas usage. They report metrics to gateways
that are close to the sensors (10-100 meters range). Gateways perform operations on the
data, communicate with each other, and to the Internet. They report data to servers in the
cloud, such as auxiliary cloud servers that perform additional analytics or directly to the
customers data centers. For this use case, Stritzinger is involved in building the gateways
and possibly additional cloud server analytics.

The WM-Bus gateways we are planning to build are small, cost sensitive devices with
form factor constraints (DIN rail, 11 cm max width). The gateway hardware and soft-
ware is designed and implement by us (see Section 2.12). This gateway shall be able to
communicate with up to 1,000 metering sensors via WM-Bus using sub gigahertz radio
and will have at least 100 Mbit Ethernet connectivity and either 3G or LTE mobile con-
nection capability. It should be able to communicate with arbitrary servers via Transport

LightKone D2.1(v1.0), September 30, 2017, Page 62

CHAPTER 5. STRITZINGER

Sensors

Gateways

Internet

Cloud Customer

Figure 2.1: High level overview of smart metering infrastructure.

Layer Security (TLS) since we do not control the server infrastructure in all applications.
It is expected that the wireless ranges of neighbouring gateways overlap. If this over-

lap is high enough, we can provide tolerance against gateway failure. In addition, having
WM-Bus radio messaging between the gateways themselves facilitates use of gateways
as a repeater to collect data from more distant sensors and provides failure tolerance
against mobile or wired up-link outages. It also allows us to attempt to reduce mobile
bandwidth by moving data between neighbouring gateways to reach a wired gateway
with much larger and cheaper bandwidth.

(b) Edge computing requirement

Since the gateways are, by physical necessity, at the edge in radio reach (up to 100 me-
ters), we need to have edge computation together with a cloud solution to collect all the
data, e.g., before delivering it to the billing software. Because of the potentially low
bandwidth availability and cost savings opportunities, edge computing has a big advan-
tage over sending raw data to the cloud.

2.4 Data model
Two distinct types of data flows through the system. The first is read-only metering data
collected by meters, which is then sent via gateways to the cloud. The second is control
data originating in the cloud, sent to the edge to affect actuators. Data is transmitted via
WM-Bus. An example of metering data is electrical power or gas usage, and an example
of actuator data is a control signal to turn electricity on or off. Both types of data flow
can go between multiple gateways, in order to achieve failure tolerance and mobile data

LightKone D2.1(v1.0), September 30, 2017, Page 63

CHAPTER 5. STRITZINGER

savings.
Metering data is expected to be tuples of a sensor ID and a monotonically increasing

counter, which might occasionally be reset on a battery change in some of the cases,
and in other cases the whole device is replaced and basically the old ID disappears and
a new one appears. IDs of metering sensors are immutable, metering and sensor values
are associated with these IDs. Normally the mapping between IDs and sensor locations
is done by the customer in the cloud, but for decision making at the edge this mapping
needs to be known in the edge nodes as well.

In a networked gateway scenario where several gateways co-operate to provide re-
dundancy and bandwidth, consistency becomes important. Aggregation of data must be
performed between the gateways without data loss and duplication. Control decisions
affecting a single local actuator must be atomic between gateways, either by connecting
the actuator to a single gateway or by some kind of atomic update between gateways.

2.5 Detailed description of the computations
There are three typical types of computations in this use cases: aggregation, data thinning,
and analytics. The former two are basically needed to reduce the transmission overhead
of the sensed data towards the cloud; whereas analytics is needed for autonomous appli-
cations where actuators can be fed with control data based on decisions originating from
the cloud.

Aggregation means collating data from several sensors, as a form of lossless data
reduction (e.g. summing up the heating measurements of all room sensors in a flat). In
this case, loss of some sensor data can result in mis-billing and care must be taken to
ensure aggregation is only done when the correct set of data is available.

Data thinning is a lossy form of data reduction, where data points in time series are
removed to save bandwidth. Since meter sensors are usually monotonically increasing
counters this cannot result in mis-billing (however, data might shift between billing peri-
ods based on latency). Depending on the data format, data reduction might be achieved
using delta encoding where occasional absolute metering values are interspersed with
data points only containing the difference in values.

Computations for decision making through analytics are likely to be originating at
the cloud level using more powerful data analytics tools. However, based on high level
decisions in the cloud, local feedback loops might be given autonomy over decisions
based on local real-time readings of data. For simple applications, this will be a one-way
dataflow, that will instruct a gateway to affect an actuator based on the readings. For
more advanced use cases, there might be the need for more advanced mechanisms, such
as state machines. Both these types of actuator manipulations needs be synchronized
reliably between multiple gateways if redundancy is to be achieved.

2.6 Conflicting operations and invariants
In the case of monotonically increasing counters or gauges, the data must arrive in a
timely fashion. Delays of more than an hour or a day are not tolerated, depending on
customer requirements. Missing data can be acceptable if later new data arrives to correct
the current measurement within a certain time frame defined by the customers need.
Depending on the customers data processing methods it might be acceptable to receive

LightKone D2.1(v1.0), September 30, 2017, Page 64

CHAPTER 5. STRITZINGER

duplicate data points, but it should be avoided. More complex sensors or advanced time
series meters (where the change in value is as important as the value itself) generally
cannot have missing data. Here data is also not allowed to be duplicated since it would
change the meaning. Time series must also have a minimum guaranteed resolution for
them to be useful.

In addition, aggregation must not change data precision. Some sub applications might
be able to live with probabilistic values if the distribution is known but most metering use
cases require exact data.

Invariants also exist when it comes to actions and decision making, since the objects
they operate on exist in the physical world. For example, to avoid breaking batteries it
is important that charging decisions are taken synchronously between involved nodes, so
that one node does not undo an action taken by another node immediately after. Some
actions might be possible to correct in feedback loops, but others might need harder
guarantees.

2.7 Divergence and divergence control
Divergence is mostly accepted for collecting data, and latency for pure metering appli-
cation is uncritical and can be minutes to hours. If infrastructure control decisions are
made, required latency can be as low as seconds no matter where the decision is made.
Important is that decisions are not based on outdated information.

As control and aggregation moves towards the edge, software update and configura-
tion becomes a critical path when it comes to synchronization and version divergence.
Steps must be taken so that even in case of diverging software version or software con-
figuration versions, the system cannot enter a corrupted or incompatible state.

2.8 Network partitions
Partitions are to be expected at all points in the architecture. Connectivity to cloud servers
can come and go based on wired or mobile Internet connectivity issues. Connections
between gateways and meters is affected by quality and interference of radio signals.
Tiered hand-off is done upwards in the case of collecting data, and downwards in the
case of control decisions (see Figure 2.1).

2.9 Operational requirements
The meters would number in the millions and generate about 10-100 readings per day, at
sizes of around 10 bytes per reading. There should be an overlap of getaway coverage
of meters, providing a fixed partitioning with some fuzziness due to varying radio range.
The gateways consist mainly of small, immobile, embedded systems. They are either
driven on battery power using long-living batteries or connected to mains electricity.
Performance and scalability on the edge can be controlled manually when deploying
more gateways. These devices would number in the thousands.

A cloud layer for this use case is optional, and would reside in a smaller number of
data centers with off-the-shelf hardware. They will be exposed to the Internet for com-
munication with the gateways. Only a small number of cloud servers would be needed,

LightKone D2.1(v1.0), September 30, 2017, Page 65

CHAPTER 5. STRITZINGER

such as a cluster of ten machines. Any eventual consistency requirements between these
machines is out of scope for this use case.

Customer cloud servers and databases are also out of scope and can be seen from the
outside as a single big database, while it might internally not be.

2.10 Security requirements
There are three layers of different security requirements described as follows.

(a) Meters to gateways

Meters are supposed to be tamper-proof and have some built in encryption and identifi-
cations to ensure data integrity and privacy—which we will implement but is outside of
the scope of our work. Limitations are set by the WM-Bus standard and what metering
sensor suppliers provide.

(b) Gateways to cloud

Typical security measures as those used between clouds and applications are needed.
The most likely option is to use a two-way securely authenticated and encrypted chan-
nel, e.g. with standard Hypertext Transfer Protocol (HTTP) over TLS (HTTPS) connec-
tions, ensuring stateless transfers and providing decent security primitives. An alternative
would be TLS encrypted Transmission Control Protocol (TCP) over Internet Protocol
(IP) (TCP/IP) connections.

(c) Gateway to gateway

Security support here is probably limited to what is available in the WM-Bus standard,
thus additional security measures will be needed. For instance, readings—if not aggre-
gated but potentially thinned—can retain the authentication and encryption of the meter-
ing sensors. Anything else originally processed by the gateways needs to be encrypted,
authenticated and possible signed by the gateway.

In addition, software and configuration updates are done over the air and require
highest security standards such that only signed code is booted once signature checks
succeed. Update needs to be authenticated after the update is written as well. Denial
of service attacks are a possibility. Flooding a gateway with unauthenticated metering
requests or replaying of data are two likely methods. Malicious attacks are relevant in the
context of command and control, where a gateway’s normal remote-control mechanisms
might be subverted.

Finally, physical access to gateways is an issue here, which needs to be dealt with by
the customer—who installs the gateways. Furthermore, tamper proofing might be built-in
in the gateways, but it is usually hard to get right; whereas secure storage of certificates
and other keys is included in the hardware.

2.11 Data protection requirements
Metering data values are highly privacy sensitive. Ideally, they are anonymized at the
metering source in a secure way—it depends on the WM-Bus standard and what is im-

LightKone D2.1(v1.0), September 30, 2017, Page 66

CHAPTER 5. STRITZINGER

plemented by the vendors. We assume sensors used by the customer have sufficient
security measures, and securing them is out of scope for our work.

Anonymized aggregated data can potentially be disclosed if there are no ways to tie
it to individual users, however data between gateways and the cloud should be encrypted
by default. We also make the assumption that the gateways and the optional cloud ser-
vice provided by us to the customer does not have to deal with individual customer IDs
and thus can work purely on the anonymized data. Control decision data have identical
requirements.

2.12 Implementation

We have selected the Erlang2 programming language as the basis of our implementation,
both for our gateways and for any additional cloud services. This is very helpful since
most software in LightKone will also be implemented in Erlang. Erlang is a language
developed at Ericsson3 for use in telecommunications switches and is well suited to net-
worked applications with fault tolerance requirements[4], and has proven to be much
more productive compared to more traditional systems languages[39].

The challenge using Erlang for this use case is that Erlang has traditionally been
seen as a high level language less suited to close to the hardware development[5]. We
have extensive experience using Erlang in this context, and have developed the GRiSP4

software and hardware stack to meet those demands. GRiSP runs Erlang close to the
hardware without a traditional Operating System (OS). Instead it utilizes Real-Time
Executive for Multiprocessor Systems (RTEMS)5 to provide low-level OS functionality.
Parts from other operating systems can be included such as network functionality and
drivers, but implementing these in pure Erlang is usually beneficiary if it can be achieved
without too much effort.

Erlang is also suited for cloud applications, therefore we will also use Erlang on the
optional cloud aggregation layer, running on the FreeBSD6 operating system.

We are in contact with Ericsson to enhance the intra-communication capabilities of
Erlang, which can allow us to more easily achieve native Erlang communication between
gateways over WM-Bus. This way, we do not have to implement a custom communica-
tion protocol between gateways.

2.13 Extension: Swarm of small satellites
Swarms of small satellites, also known as microsatellites, is another business area that
Stritzinger has plans to enter, and is proposing a corresponding use case to study within
LightKone. The use case is indeed similar to smart metering in many fundamental and
practical aspects; and it is very likely to use the same prospective software base of the

2Erlang is a programming language developed by Ericsson, used to build massively scalable soft real-
time systems with requirements on high availability: http://www.erlang.org

3Ericsson is a multinational networking and telecommunications equipment and services company
headquartered in Stockholm, Sweden: https://www.ericsson.com

4GRiSP: Dive into a new experience of building wireless embedded systems: https://www.grisp.org
5RTEMS is an open source Real Time Operating System (RTOS): https://www.rtems.org
6FreeBSD is an advanced computer operating system used to power modern servers, desktops, and

embedded platforms: https://www.freebsd.org

LightKone D2.1(v1.0), September 30, 2017, Page 67

http://www.erlang.org
https://www.ericsson.com
https://www.grisp.org
https://www.rtems.org
https://www.freebsd.org

CHAPTER 5. STRITZINGER

Figure 2.2: The GRiSP base hardware board.

metering use case to address potential new challenges in the satellites use case. To avoid
redundancy, we opt to include the satellites use case as an extension section. In the
following, we first overview the use case showing the conceptual and implementation
similarities with the metering use case; and then we highlight the major points where
special tackling may be required due to possible differences in functional and nonfunc-
tional properties.

Traditional satellite development, launching heavy and well-tested satellites, is very
expensive. As the need for more devices in space increases, ways to develop cheaper
satellites and applications for space involve making smaller and cheaper devices with
more off-the-shelf hardware and software. This market is expected to get very large
in the coming years[10]. In this terminology microsatellites and nanosatellites refer to
satellites in the size range 10-100 Kg and 1-10 Kg respectively[28]. Specialized versions
include CubeSats which are devices that measure 10x10x10 cm. Such devices when
acting as satellite swarms (or ”fractionated spacecrafts”) share many similarities to the
smart metering scenario:

• They usually have sensors for ingesting data, such measurement devices or cam-
eras. Actuators are possible, but rare.

• Computations in space are power constrained.

• Satellites move around, only being in range sporadically. This is similar to connec-
tion loss or the drive-by scenario for smart metering.

• Bandwidth to ground—downlink—is very limited (Kbit/s) compared to bandwidth
between satellites (Mbit/s).

• Satellites are positioned at the edge, but are sometimes paired with larger, more
capable satellites acting as downlink gateways.

LightKone D2.1(v1.0), September 30, 2017, Page 68

CHAPTER 5. STRITZINGER

• The goal is to collect and aggregate data to ground based servers (which have no
constraints in regards to power or capability).

Next, we address the potential differences with the smart metering use case which
will be tackled within Lightkone. A single exception that will not be addressed in the
project is the following. In addition to satellites communication with each other and
acting as devices in an edge network, they are often constructed with several processors
for redundancy. This poses interesting sub-problems in regards to consistency, but in
these cases the design usually opts for full consistency to mitigate potential hardware
problems that are more common in harsh environments such as space (bitflips, faulty
hardware, temperature extremes). One common solution is to have several copies of the
system running, voting on decisions based on calculation results similar to much software
in airplanes and other critical use cases. Since this is a different paradigm, and local to
the individual devices, it can be ignored for our work.

(a) Current development

Stritzinger does not currently have any active projects related to nanosatellites but have
realized the potential of the market and the big overlap with the current work with smart
metering networks. Our developments so far in the smart metering use case and other
projects have partly been done with the future nanosatellite use case in mind.

(b) Detailed description

The tiers in the smart metering use case apply here as well, where the gateway and sensor
tiers are fulfilled by satellite objects in orbit. Bigger satellites or satellites with special
equipment —acting as gateways— can be responsible for transmitting information to
ground, whereas smaller or simpler satellites can be responsible for collecting data. One
extra pseudo-tier exists in the additional equipment needed to receive and send radio
signals on the ground. This is part of the transportation layer and can be seen as wireless
link directly to servers on the ground for the purposes of this use case.

In addition to the smart metering use case, control operations become more common
and more critical in space. These include, but are not limited to, changing of orientation
(direction, orbital position etc.), configuration of instruments, integrity checks and power
state changes. The same semantics does still apply and we expect any research results in
regards to the smart metering use case will be well applicable here as well.

(c) Data model

The data model is equivalent to that of smart metering, where data should converge even-
tually, since strict consistency is not critical. In addition, although the available memory
and storage may be more or less different to those of smart metering, they still share the
same constraints.

(d) Conflicting operations and invariants

The semantics are identical to the smart metering use case with the addition of control
operations being more common. Physical invariants exist, similar to those in the parent

LightKone D2.1(v1.0), September 30, 2017, Page 69

CHAPTER 5. STRITZINGER

use case, such as changing a power state must not be done in parallel by several neigh-
bouring nodes. In this case the individual satellites would perhaps have more autonomy
over their local control state, requiring only consensus internally among the hardware
components in a single satellite.

(e) Network partitions

GROUND

Sat 1

Sat 2

Sat 3

Sat 4

t

Power

Communication

Figure 2.3: Communication between satellites and ground.

Network partitions would be more frequent, since there is more possible interference
both between ground and the satellites and among the satellites themselves (see Fig-
ure 2.3). Satellites might also frequently go in and out of low power states to preserver
battery, which will limit or disable any communications possibilities.

(f) Operational requirements

Providing power is a major difference to the smart metering use case. Battery power is the
only way to power devices in space, and they have to be recharged via solar power which
might not always be available. On the other hand, communication in space, though dif-
ferent, is operationally similar to non-reliable mobile Internet connection. In particular,
Radio communication will have to be adopted for space, selecting appropriate hardware
and frequencies. Other options includes using traditional frequencies, such as Wi-Fi
where experiments have been done between spacecraft[36], or optical frequencies such
as laser[11]. Uplink and downlink communication is subject to the atmospheric radio
window and international and local regulations.

As mentioned before, another main difference to the requirements described in Chap-
ter 2.9 is the possible addition of intra-device consistency and fault-tolerance by using
consensus voting between redundant copies of hardware. This is a common way of
handling faults in flight hardware and software. However, this should be treated as a
hardware internal issue and is thus not part of the scope of this use case.

LightKone D2.1(v1.0), September 30, 2017, Page 70

CHAPTER 5. STRITZINGER

In all other aspects, storage and other hardware capacity will be identical to the smart
metering use case as similar classes of hardware will be used.

(g) Security requirements

For uplink connections —data sent from ground to the satellites— command authenti-
cation needs to be performed to prevent unauthorized access to the hardware. Downlink
connections —data sent from satellites to ground— normally does not need any advanced
protection for most civil applications. Encryption will be used for valuable commercial
data to protect it from competitors. For satellites, the physical attack scenario can be
ignored since it in most cases will not be feasible to perform and thus not commercially
interesting to protect from.

(h) Data protection requirements

Data sent is not tied to a user and does not need any privacy protection.

(i) Implementation

In initial prototyping stages, we plan to use the same technology stack as with the smart
metering use case.

LightKone D2.1(v1.0), September 30, 2017, Page 71

CHAPTER 5. STRITZINGER

LightKone D2.1(v1.0), September 30, 2017, Page 72

Chapter 6

Gluk

1 Agriculture sensing analytics

1.1 Overview of the use case
In this specific use case we present GLUK’s IoT, sensor based analytics platform. This
platform is planned to be used in many areas of our daily life, such as agriculture, health,
smart homes, etc, depending on the business strategy of the Company. To the current
deliverable, and based on the LightKone proposal, we will present our use case designed
for precision agriculture. This information and technology based agriculture manage-
ment system aims at the application of technologies and principles to identify, analyze
and manage spatial and temporal variability associated with all aspects of agricultural
production within fields. The domain we have chosen and have made our current instal-
lation is the winery industry. The installation refers both to the wine cellars where the
wine is being made, but also to the vineyards where the grapes are being cultivated.

In order to achieve the above, our platform consists of the following main compo-
nents:

1. Wireless sensor nodes (WSN): integrated sensors for data acquisition enabled
with wireless interfaces for sending the data to a field basestation/gateway,

2. Basestation/gateway enabled with radio interfaces for communication with WSN
and cellular radio interface for connectivity with GSM and/or GPRS/LTE for inter-
net connectivity,

3. Open APIs for data handling, storage capabilities on the network keeping an
archive of the measurements, open APIs for developers to develop new applications
per farming case,

4. Dashboard/GUI for personal computers, tablets and smartphones which presents
the history of collected data and business analytics for decision making.

In figure 1.1 the top level architecture is depicted, that explains how the aforemen-
tioned components are interacting per installation. In the current and every future installa-
tion the number of nodes could differ, and this has to do with every client’s requirements.
For this and for visualization reasons in figure 1.1 we have used the specific number of

73

CHAPTER 6. GLUK

nodes as an example.

Figure 1.1: Current Setup - Architecture

1.2 Current development

In the current development we are using sensors that are collecting only immutable data.
These data are coming from the vineyard and the cellar, and they have to do with pa-
rameters such as temperature, soil moisture, pH, conductivity, humidity, and light. All
these data are transmitted through the gateways that are installed (in the vineyard and
the cellar) and sent to the cloud. There we gather the date and forward them to the end
user, in case they need static data, but we also apply business analytics so as to be used in
future case. In the cloud we apply business analytics using machine learning algorithms
to generate statistical results for future use.

After the deployment, we are always receiving new requirements from the end users
and respectively we have to upgrade our system by installing new sensors and bringing
up new services.

The current flow is depicted in figure 1.2.

LightKone D2.1(v1.0), September 30, 2017, Page 74

CHAPTER 6. GLUK

Figure 1.2: Flow in the current installation

(a) Conflicting operations

In the monitoring process of the inputs from the sensors, we do not meet any conflicting
operations.

(b) Invariants that exist in the application state

At the current installation there are no invariants that could affect the system operation.

(c) Performance results

In the current setup we perform a data sampling rate of up to three samples per 10 min-
utes. The typical medium distances are 70 to 300 meters (inside the cellar smaller than
outside) and the data transition rates from the nodes to the gateway are from 250 to 5,470
bps. This varies and has to do with many parameters, one of the most important being
the environmental (weather) conditions.

(d) Security threats

In the current setup we use all the security features provided by the hardware in use. In
the agriculture domain and in the current installation there are no major security concerns.

LightKone D2.1(v1.0), September 30, 2017, Page 75

CHAPTER 6. GLUK

(e) Current deployment details

In the current development of the wireless sensor network system we are using the open-
source hardware platforms Arduino [3] and Raspberry Pi [18]. The system is low-cost
and highly scalable both in terms of the type of sensors and the number of sensor nodes,
which makes it well suited (effective and cost-efficient) for our customers. We are using
Microsoft Azure [32] cloud for hosting and running our scripts. In the Azure cloud we
are using Microsoft SQL Server 2012 and the Entity Framework (version 6.1.3) for the
management of the database layer.

1.3 Detailed description
In our development we want to replace cloud by performing the computation in the edge.
At this moment, all the critical data is transmited to the cloud as input to the machine
learning algorithms, stored, processed, etc., a fact that makes the whole procedure slug-
gish. We would like to use the stored data in the cloud in order to create the patterns (e.g.
models for optimization of the grape cultivation, models for optimization of the wine ma-
turing, etc.), but also to use them statistically, in order to create business analytics rules to
be used by other industries e.g. insurance industry. Furthermore, we want to upload the
rules to the edge (e.g. rules for triggering an actuator) and the patterns. That approach
could be more efficient in a remote location-solution, such as in the precision agriculture
field, where many constrains exist in the communication part.

This use case, in the future deployment must fulfill the following challenges and
functional requirements:

• Easy to be installed and used (farmers are people with low technological skills).

• Scalable solution. Covers from a small family cellar to large vineyards (multiple
buildings, etc).

• Plug n’ Play (turn on the power, set the sensors and get values).

• Low maintenance cost.

• Low power solution. Due to the fact that the sensors and nodes will be distributed in
not easily accessible areas, and fixed power lines will not easy accessible, batteries
are going to be used and therefore we need a minimal power consumption.

• Extendable. The user can add extra sensors any time he wants, without having any
technical knowledge.

• Data Visualization. For example, the wine maker should be able to get a projected
heat map of the cellar on his tablet.

• Weatherproof. The solution must be able to withstand exposure to weather without
damage or loss of function.

• Power and communication backup plan.

• It must be able to process static measurements from sensors (e.g. temperature, hu-
midity, etc) but also it must be able to control devices (e.g. actuators, surveillance
cameras, etc).

LightKone D2.1(v1.0), September 30, 2017, Page 76

CHAPTER 6. GLUK

• Near real-time data for decision making.

• Remote programming.

• Automatic different types of network handoff.

• Immediately to detect and heal a potential failure (reset, replace, or recalibrate the
sensor, etc.).

• Software easy to be used for people from age range 20 to 65 (studies show that
elderly people are in favor of using tablets rather than other devices – it is also easy
for a farmer to carry a table around and read on it, even for people with presbyopia).

• Bidirectional control: For example, the user will have the option available to choose
the period for acquiring new measures.

• Engage scientists and update rules and patterns. Through a web interface the sci-
entists/experts must be able to upload the new rules or patterns at the edge. E.g.
temperature level in the cellar before hit an alert, quality parameters for the wine
inside the tanks, etc).

• Store the data for business analytics.

• Reduce cloud traffic and hosting costs.

• Insect detection and sound classification acoustic sensors.

• It should be able to incorporate data that make the decision more accurate and
effective from external sources, e.g. meteorological data - predictions, imagery
from drones, etc).

(a) Architecture

Figure 1.3 shows the use case architecture we have envisaged. Depending on the instal-
lation, there could exist more than one gateway and the number of nodes could be up to
a hundred.

What we want to realize in the system is the following (best case scenario):

Edge nodes:

• Receive feeds from IoT devices using any protocol, in real time

• Run IoT-enabled applications for real-time control and analytics, with millisecond
response time

• Provide transient storage, often one to two hours

• Send periodic data summaries to the cloud

Cloud:

• Receives and aggregates data summaries from many edge nodes

LightKone D2.1(v1.0), September 30, 2017, Page 77

CHAPTER 6. GLUK

Figure 1.3: Flow in the edge

• Performs analysis on the IoT data and data from other sources to gain business
insight

• Sends new application rules to the edge nodes based on these insights

(b) Edge computing requirement

By 2020, 43 percent of all IoT generated data will be processed at the edge. Our use case
is going to use “edge intelligence” to make real-time analytics-based decisions. E.g. an
insurance company (which is a target customer for Gluk) calculates a potential risk in
the insured product (e.g. vineyard) and also receives the cultivation data to cross check
any frauds. Another example has to do with the online and remote update of the rules
and the patterns from scientists or experts for an optimized cultivation. Machine learning
routines will be applied and used at the edge. In order to realize the above suggestive
scenarios, we need edge coomputing in our platfrom in order to enable faster and local
decision making but also realtime constraints in future installations. The business target
for the company is to offer a sophisticated services portfolio, not ”yet another hardware
solution”, as defined and presented in the functional requirements in a previous section.
The company strategically plans to use the aforementioned technology and equipment
also in more demanding and competitive applications compared to the agriculture case.

1.4 Data model
The system will mainly manipulate data received by sensors and actuators.

Sensors may be physically hardwired or communicate via a short-haul communica-
tion protocol like Bluetooth Low Energy (LE) or ZigBee.

LightKone D2.1(v1.0), September 30, 2017, Page 78

CHAPTER 6. GLUK

Actuators will affect the electromechanical or logical state of the product and the en-
vironment. They are going to be the system’s hands and feet. System commands sent
to embedded applications—such as remote reboot, configuration updates, and firmware
distribution—should also be considered actuation because, by changing its software, the
system is in fact changing the physical reality of the product.

In the current implementation the wireless sensor network was treated as a relational
database. In our developments each sensor produces multiple tuples. The node that gen-
erates the tuple is termed the source. For example, the temperature sensor produces a
tuple of the form <nodeLocation, timestamp, temperature>. All the data are stored in
Microsoft SQL Server 2012 Database.

Dependencies

Dependencies between sensors and actuators are going to exist, since the actuators
status could be change if specific parameters are being changed (e.g. the soil moister
sensor can affect the water pumps for irrigation purposes).

1.5 Detailed description of the computations
Following, an example is provided:

The winemaker must receive feedback from the scientists about the quality of the
grapes inside the tanks. Until now the winemaker has to receive a sample of the mixture
and deliver it to chemists in order to analyze it (through spectroscopy) and take the results.
This procedure that takes long, cost time, money and increases the risk of spoiling the
grapes in the tank. Using the edge solution the spectroscopy could be installed in the
tank immediately, receive the values and make the computation at the edge by providing
the result immediately to the winemaker. The rules and patterns in order to interprete the
results would have been uploaded to the edge. So, the solution could deliver results even
though in an offline mode. Later on the data could be transmitted to the cloud in order to
be used for statistical purposes. Furthermore, in that way, we want to avoid any privacy
implications that could arise by transmitting data in the cloud (in another scenario of this
topology).

The hierarchy of the computations we want to achieve is the following:

• The most time-sensitive data is analyzed on the edge node closest to the things
generating the data. For example, one of the most time-sensitive requirement is to
verify that protection and control loops are operating properly. Therefore, the edge
nodes closest to the sensors can look for signs of problems and then prevent them
by sending control commands to actuators.

• Data that can wait seconds or minutes for action is passed along to an aggregation
node for analysis and action. This type of data could be for example the values
from the sensors that do not affect the actuators or any other immediate decision
making.(e.g. last hour temperature values in order to be used in the heat map
projection).

LightKone D2.1(v1.0), September 30, 2017, Page 79

CHAPTER 6. GLUK

• Data that is less time sensitive is sent to the cloud for historical analysis, big data
analytics, business analytics and long-term storage. For example, each of thou-
sands or hundreds of thousands of edge nodes might send periodic summaries of
weather data to the cloud for historical analysis and storage.

1.6 Conflicting operations and invariants
In the case that there is a blocked actuator and we don’t know it on time, it could be
huge problem for the production. Or in the case that an actuator is being or not triggered
because of a false or non-measurement it could lead to major problems. E.g. The air-
climate control in the cellar, in a very warm environment, is not triggered because the
temperature measurements have failed. The system as from the moment that is going to
use actuators and rules will be applied it is going to involve invariants. These invariants
should not be violated and must be true all the time. Otherwise a critical failure in the
monitoring and alerting will happen, fact that will create damages in the client.

1.7 Divergence and divergence control
It is important for the deployment to know any time the real status of the network. In
case of the vineyard or the precision agriculture the deployment could reach a large geo-
graphical areas and the nodes could be difficult to be monitored. It is quite important to
know the measurements per area, since this is a key element for the quality of the crops.
E.g. it is quite important to know the temperature in the cellar from multiple sampling
points, so in case those halves of the sensors are off, it is a problem. Furthermore, we
must know in which geographical position the problem exists so as to easily find it and
repair it.

In the case of the measurements form the sensors (e.g. temperature, humidity, mois-
ture, etc.) a small delay does not make significant problem in the system. We could live
with a 5 minute divergence in this case but in the case of the actuators it could be a huge
problem, e.g. in case of a blocked water pump a water overflow could happen, and we
cannot live with that. In case of actuators only a divergence of 1-2 seconds could be
affordable.

The data that are going to be sent to the cloud for further processing and statistical
analysis could be transmitted with some delay. One hour it would be also acceptable.
However, we want to avoid such long delays.

An offline mode is acceptable if the computations take place on the edge, fact that
could happen in real life (e.g. loss of network connectivity due to heavy weather condi-
tions).

1.8 Network partitions
It could be possible to have network partitions. The system could be receiving data,
which are stored locally in the network device and after a time period, transmitted to
the main database. When the partition goes away it is acceptable to merge data. This
procedure should taking place seamlessly. Also, it could exist a node hierarchy in the
installation in case of multiple nodes. Each node (hardware feature), could be used in

LightKone D2.1(v1.0), September 30, 2017, Page 80

CHAPTER 6. GLUK

a different role in the deployment (e.g. end device, router, coordinator, etc) and can be
deployed either in a tree or mesh deployment.

1.9 Operational requirements
The application currently runs in the infrastructure, and this is how planned to do. Cur-
rently in a small number of data centers in the cloud. Edge computing will manage to
increase the performance in more competitive scenarios (more nodes and respectively
sensors and data, especially in the automated decision making process).

A typical example of the hardware that we use in experiments (more expensive solu-
tion comparing to installations in clients) is presented below:

Gateways
Processor: 1 GHz Quad Core (x86)
RAM memory: 2 GB (DDR3)
Disk memory: 16 GB
Power: 6 to 12 W (12 V)
Power source: PoE (Power Over Ethernet)
Security: Authentication WEP, WPA, WPA2, HTTPS

Nodes
Microcontroller: ATmega1281
Frequency: 14.7456 MHz
SRAM: 8 kB
EEPROM: 4 kB
FLASH: 128 kB
SD card: 2 GB
Weight: 20 g
Dimensions: 73.5 x 51 x 13 mm
Temperature range: [-10 oC, +65 oC]
Clock: RTC (32 kHz)

Nodes Consumption
On: 17 mA
Sleep: 30 microA
Deep Sleep: 33 µA
Hibernate: 7 µA
Operation without recharging: 1 year (Time obtained using
the Hibernate mode as energy saving mode)

In the application of the solution in client’s side, always we keep in mind the hard-
ware cost parameter. The client must pay for the services and not an extremely high
initial purchase cost. Therefore we are looking for cost-effective hardware solutions.

LightKone D2.1(v1.0), September 30, 2017, Page 81

CHAPTER 6. GLUK

Currently we are in investigations of printing out our own board.

Furthermore, the following parameters must be considered:

• The network could be Ethernet, wifi or GSM/3G/4G. Also, we have to consider
the fact that the system will be deployed in a wide geographical area with vari-
ant environmental conditions and a standard minimum bandwidth must be
preserved.

• Each installation it should be capable to support up to 100 nodes per 1 gateway.
Each node could act as end device, router, coordinator, etc. Each node is considered
to support minimum 10 sensors or actuators.

• The size of each object is considered to be mostly bytes.For example in the current
installation each frame is 20bytes. In case we integrate cameras in the installation
the size could be increased but this is not a priority. The rate of data growth follows
a linear curve.

• The objects could be composed of independent databases but also in one big database.
This has to do also with the hosting/cost parameter.

1.10 Security requirements
High security is not a must in the specific Use Case and computation power could be
saved in favor of other computation. However, security issues must be considered in
terms of:

• Integrity. Corrupted or manipulated data will affect the provided services.

• Authentication. We want to avoid injecting additional packets, and nodes accepting
false administrative tasks (e.g. network reprogramming).

• Availability. It is essential that the users of the sensor network must be capable of
accessing its services whenever they need them.

• Freshness. The data produced by the sensor network must be recent. Consequently,
the messages of the network should aim to reduce the network delay to the smallest
possible value, even in unfavourable situations where the network is under attack or
other emergency. Furthermore, if an adversary success on replaying an old message
inside the network, the data not only will be useless, but also harmful (e.g. it may
inform of a non-existent alarm).

• Auditing. In order to adjust their behaviour, sensor nodes must be able to know the
state of their surroundings.

• Privacy and Anonymity. These security properties are very important only for the
scenarios where the location and identities of the base station and the nodes that
generated information should be hidden or protected.This item is related to section
1.11.

LightKone D2.1(v1.0), September 30, 2017, Page 82

CHAPTER 6. GLUK

1.11 Data protection requirements

In the current development and use case presentation there is no need to consider data
protection issues. However, in future installation using the same topology, but different
requirements, they could arise data protection issues. For example, if the infrastructure is
being used in a physical security scenario, in vehicle plates recognition, face recognition
if cameras are being used, in smart homes-health environment, when the user will have
to transmit personal data or for physical security purposes cameras are being used.

1.12 Implementation

We implement our scripts in C++ and Java (programming part in sensor network). For the
publication to the outside world we use Microsoft Azure Cloud and for the deployment
the IIS version 8.5. All the business analytics have been generated using the ASP.NET
MVC, version 5.2.3. We are open to use the technologies that have been developed in
Syncfree project (e.g. Antidote db).

Furthermore, we are always taking account the following objectives during our im-
plementations:

LightKone D2.1(v1.0), September 30, 2017, Page 83

CHAPTER 6. GLUK

Technical Objectives
Objective Details
Selection of commer-
cial off the shelf sensors
and actuators for the se-
lected agriculture appli-
cations

Selection criteria will include: Depending on
the applications sensor types such as soil mois-
ture, temperature, humidity, light, pH, conduc-
tivity, hive weight, soil temperature, trunk di-
ameter, stem diameter, fruit diameter, weather
station etc. and actuator types such as wa-
ter pump, electro valve, oxygen pump, grow-
ing Light, etc. Power consumption evaluation
of sensors and actuators for autonomy evalua-
tion. Sampling frequency of sensors, accuracy
and sample size. Resistance on harsh environ-
ment (temperature, humidity, rain)

Selection of wireless
technology for connec-
tivity of the remote de-
vices

Selection criteria will include: Low-power con-
nectivity solutions. Depending on the use case
corresponding design parameters such as radio
transceivers density per square meter, and wire-
less link distance. Low packet error rates, and
wireless capacity to fulfil sensor sampling/data
rates. Mesh and star topologies with the corre-
sponding routing protocols.

System components
(boards) development
for the agriculture
fields

Depending of use case we will propose and in-
troduce the corresponding system components
(boards). Main characteristics of the system
components will include: Power management,
supporting sleep modes for low power con-
sumption, energy autonomy or prolonged life-
time if is battery-based, introducing solar en-
ergy harvesting if is needed Low power micro-
processor(s) for data processing, storage and re-
ceiving transmitting data. Low latency inter-
faces with wireless transceivers, sensors and ac-
tuators.

LightKone D2.1(v1.0), September 30, 2017, Page 84

Chapter 7

Data Protection

1 Introduction

LightKone use cases rely on modern information and communications technology, which
in some cases could raise a lot of questions regarding legal, ethical and even social im-
plications. Social exclusion, trespassing of individuality and privacy, malicious use of
sensitive data and decisions made towards their management are only some general in-
dicators of potential misguidance when applying new technological innovations. Addi-
tionally, the use of personal data such as acquisition of images and location information,
entails the risk and responsibility of being aware of a citizen’s profile. Even so, how can it
be assured that the technology applied to improve business activities does not ultimately
result in harming of the other citizens’ well-being?

In this section we will make an introduction to the current data protection framework,
and further considerations per each LightKone’s use case with reference to existing leg-
islation will be defined.

2 EU legal framework for the right to data protection

The protection of personal data is one of the most important issues in the European Union
regulatory framework, and extensive work has been performed in order to obtain a com-
prehensive European Directive that regulates the treatment of personal data in the Euro-
pean Union. In fact, personal data is collected and used in many aspects of everyday life
and can be collected directly from the individual or from existing databases; moreover,
personal data can be used for purposes different from the original ones. Additionally,
personal data may be available in places different from the original location, so that data
related to the citizens of one member state can be used in other member states of the EU
or even in every country of the world. This raises the necessity of a European regulation
framework to handle and protect this data by overcoming potential discrepancies among
national laws. Furthermore, some member states did not have laws on data protection.
For these reasons, there was a need for action at the European level, and this took the
form of EC Directives.

85

CHAPTER 7. DATA PROTECTION

2.1 Directive 95/46/EC
The Protection of Private Data Directive 95/46/EC[16] is a directive adopted by the
European Union designed to protect the privacy and protection of all personal data col-
lected for or about citizens of the EU, especially as it relates to processing, using, or
exchanging such data. It includes all key elements from article 8 of the European Con-
vention on Human Rights, which states its intention to respect the rights of privacy in
personal and family life, as well as in the home and in personal correspondence. The
Directive 95/46/EC was developed to harmonize national laws for personal data protec-
tion and movement of data, based on the existing national legislation of the EU Member
States. The Directive 95/46/EC is the reference text, at European level, on the protection
of personal data. It sets up a regulatory framework which seeks to strike a balance be-
tween a high level of protection for the privacy of individuals and the free movement of
personal data within the European Union (EU). To do so, the Directive sets strict limits
on the collection and use of personal data and demands, that each Member State sets
up an independent national body responsible for the protection of these data. The Di-
rective 95/46 EC includes the main legislative principles applicable to all processing of
personal data and all the use cases and scenarios of the LightKone project are subject
to this directive, and after 25th of May 2018 they will be subject to the new EU Gen-
eral Data Protection Regulation (GDPR). In the context of the Directive, personal data is
defined as ”any information relating to an identified or identifiable natural person. An
identifiable person is one who can be identified, directly or indirectly, in particular by
reference to an identification number or to one or more factors specific to his physical,
physiological, mental, economic, cultural or social identity” (Article 2a).

2.2 EU General Data Protection Regulation (GDPR)
The EU General Data Protection Regulation (GDPR) [17] replaces the Data Protection
Directive 95/46/EC on the 25th of May 2018 and was designed to harmonize data privacy
laws across Europe. It protects and empowers all EU citizens’ data privacy and reshapes
the way organizations across the region approach data privacy. The aim of the GDPR is
to protect all EU citizens from privacy and data breaches in an increasingly data-driven
world, that is vastly different from the time in which the 1995 directive was established.
Although the key principles of data privacy still hold true to the previous directive, many
changes have been proposed to the regulatory policies; the key points of the GDPR as
well as information on the impacts it will have on business can be found below.

(a) Increased territorial scope (extra-territorial applicability)

Arguably the biggest change to the regulatory landscape of data privacy comes with the
extended jurisdiction of the GDPR, as it applies to all companies processing the personal
data of data subjects residing in the Union, regardless of the company’s location. Previ-
ously, territorial applicability of the directive was ambiguous and referred to data process
’in context of an establishment’. This topic has arisen in a number of high profile court
cases. GPDR makes its applicability very clear - it will apply to the processing of per-
sonal data by controllers and processors in the EU, regardless of whether the processing
takes place in the EU or not. The GDPR will also apply to the processing of personal
data of data subjects in the EU by a controller or processor not established in the EU,

LightKone D2.1(v1.0), September 30, 2017, Page 86

CHAPTER 7. DATA PROTECTION

where the activities relate to: offering goods or services to EU citizens (irrespective of
whether payment is required) and the monitoring of behaviour that takes place within the
EU. Non-EU businesses processing the data of EU citizens will also have to appoint a
representative in the EU.

(b) Penalties

Under GDPR, organizations in breach of GDPR can be fined up to 4% of annual global
turnover or e20 million (whichever is greater). This is the maximum fine that can be
imposed for the most serious infringements e.g.not having sufficient customer consent
to process data, or violating the core of Privacy by Design concepts. There is a tiered
approach to fines e.g. a company can be fined 2% for not having their records in order
(article 28), not notifying the supervising authority and data subject about a breach or not
conducting impact assessment. It is important to note that these rules apply to both con-
trollers and processors – meaning ’clouds’ will not be exempt from GDPR enforcement.

(c) Consent

The conditions for consent have been strengthened, and companies will no longer be able
to use long illegible terms and conditions full of legalese, as the request for consent must
be given in an intelligible and easily accessible form, with the purpose for data processing
attached to that consent. Consent must be clear and distinguishable from other matters
and provided in an intelligible and easily accessible form, using clear and plain language.
It must be as easy to withdraw consent as it is to give it.

(d) Data subject rights

(d).1 Breach notification Under the GDPR, breach notification will become manda-
tory in all member states where a data breach is likely to “result in a risk for the rights
and freedoms of individuals”. This must be done within 72 hours of first having become
aware of the breach. Data processors will also be required to notify their customers, the
controllers, “without undue delay” after first becoming aware of a data breach.

(d).2 Right to access Part of the expanded rights of data subjects outlined by the
GDPR is the right for data subjects to obtain confirmation from the data controller as to
whether or not personal data concerning them is being processed, where and for what
purpose. Furthermore, the controller shall provide a copy of the personal data, free of
charge, in an electronic format. This change is a dramatic shift to data transparency and
empowerment of data subjects.

(d).3 Right to be forgotten Also known as Data Erasure, the right to be forgotten
entitles the data subject to have the data controller erase his/her personal data, cease
further dissemination of the data, and potentially have third parties halt processing of the
data. The conditions for erasure, as outlined in article 17, include the data no longer being
relevant to original purposes for processing, or a data subjects withdrawing consent. It
should also be noted that this right requires controllers to compare the subjects’ rights to
”the public interest in the availability of the data” when considering such requests.

LightKone D2.1(v1.0), September 30, 2017, Page 87

CHAPTER 7. DATA PROTECTION

(d).4 Data portability GDPR introduces data portability - the right for a data subject
to receive the personal data concerning them, which they have previously provided in a
’commonly use and machine readable format’ and have the right to transmit that data to
another controller.

(e) Privacy by design

Privacy by design as a concept has existed for years now, but with the GDPR it is now be-
coming part of a legal requirement. At it’s core, privacy by design calls for the inclusion
of data protection from the onset of the designing of systems, rather than an addition.
More specifically - ’The controller shall .. implement appropriate technical and orga-
nizational measures .. in an effective way .. in order to meet the requirements of this
Regulation and protect the rights of data subjects’. Article 23 calls for controllers to hold
and process only the data absolutely necessary for the completion of its duties (data min-
imisation), as well as limiting the access to personal data to those needing to act out the
processing.

(f) Data protection officers

Currently, controllers are required to notify their data processing activities with local
DPAs, which, for multinationals, can be a bureaucratic nightmare with most member
states having different notification requirements. Under GDPR it will not be necessary
to submit notifications / registrations to each local data protection authority (DPA) of
data processing activities, nor will it be a requirement to notify / obtain approval for
transfers based on the Model Contract Clauses (MCCs). Instead, there will be internal
record keeping requirements, as further explained below, and DPO appointment will be
mandatory only for those controllers and processors, whose core activities consist of
processing operations which require regular and systematic monitoring of data subjects
on a large scale or of special categories of data or data relating to criminal convictions
and offences. Importantly, the DPO:

• Must be appointed on the basis of professional qualities and, in particular, expert
knowledge on data protection law and practices.

• May be a staff member or an external service provider.

• Contact details must be provided to the relevant DPA.

• Must be provided with appropriate resources to carry out their tasks and maintain
their expert knowledge.

• Must report directly to the highest level of management.

• Must not carry out any other tasks that could results in a conflict of interest.

(g) Data protection per use case

In the following table are presented in a total all the data protection considerations per
use case (identified by their chapter and section number). Guifi does not implicate any
privacy issues in their use cases, therefore their use cases references are not mentioned in
the table.

LightKone D2.1(v1.0), September 30, 2017, Page 88

CHAPTER 7. DATA PROTECTION

Traceability matrix of data privacy implications

Use
case

Implication Compliance to
legal framework

4.1
4.2
4.3

Fairly and lawfully processed
personal data

Article 6 of
the Directive
95/46/EC, Article
5 of the Regu-
lation EC COM
(2012), GDRP

4.1
4.2
4.3
5.2

Processed, for limited pur-
poses, personal data

Article 7, 8 of
the Directive
95/46/EC, GDRP

4.1
4.2
4.3
5.2

Adequate, relevant and not
excessive personal data

Article 6 of
the Directive
95/46/EC, GDRP

4.1
4.2
4.3
5.2

Accurate personal data Article 6 of
the Directive
95/46/EC, GDRP

4.1
4.2
4.3
5.2

Data should not be kept
longer than necessary

Article 6 of
the Directive
95/46/EC, GDRP

6.1
4.1
4.2
4.3

Data have to be processed in
accordance

Article 7 of
the Directive
95/46/EC, GDRP

6.1
4.1
4.2
4.3
5.2

Data must be securely ex-
changed via encryption
mechanisms

Article 16, 17
of the Directive
95/46/EC, GDRP

LightKone D2.1(v1.0), September 30, 2017, Page 89

CHAPTER 7. DATA PROTECTION

Traceability matrix of data privacy implications (cont.)

Use
Case

Implication Compliance to
legal framework

4.1
4.2
4.3

Data must not be transferred
to countries without adequate
data protection

Article 25 of
the Directive
95/46/EC, GDRP

4.1
4.2
4.3
5.2

Data must be securely de-
stroyed after their usage with
absolutely no chance of re-
trieval

Article 12 of
the Directive
95/46/EC, GDRP

4.1
4.2
4.3

Citizens must be aware of
being under surveillance and
have access to their personal
data

Articles 6, 12
of the Directive
95/46/EC, GDRP

4.1
4.2
4.3
5.2

Secure storage and manage-
ment of the personal data

Article 16, 17
of the Directive
95/46/EC, GDRP

4.1
4.2
4.3

Respect the citizen’s privacy
and individuality – try to keep
the anonymity

Article 6 of
the Directive
95/46/EC, Article
5 of the Regu-
lation EC COM
(2012), GDRP

4.1
4.2
4.3

The citizens must be aware of
the fact that they are moni-
tored , of their legal rights and
of the impact on their lives

Article 6 of
the Directive
95/46/EC Article
5 of the Regu-
lation EC COM
(2012), GDRP

LightKone D2.1(v1.0), September 30, 2017, Page 90

CHAPTER 7. DATA PROTECTION

Traceability matrix of data privacy implications (cont.)

Use
Case

Implication Compliance to
legal framework

4.1
4.2
4.3

Use of personal data ac-
cording to human rights and
democratic practice

Article 6 of
the Directive
95/46/EC Article
5 of the Regu-
lation EC COM
(2012), GDRP

4.1
4.2
4.3

Ensure the end-users that
their personal data will not
being used against them
(Confidentiality)

Article 16 of
the Directive
95/46/EC, GDRP

4.1
4.2
4.3

Data must be securely ex-
changed via encryption
mechanisms

Article 16, 17
of the Directive
95/46/EC, GDRP

LightKone D2.1(v1.0), September 30, 2017, Page 91

CHAPTER 7. DATA PROTECTION

LightKone D2.1(v1.0), September 30, 2017, Page 92

Chapter 8

Security Analysis

1 Introduction

1.1 Security versus data protection

In the previous section we discussed the legal aspects related to data protection. However,
in addition to these aspects, information security must also be considered from a tech-
nological viewpoint. Both aspects are closely related areas that complement each other
but belong to different domains. While data protection refers to the set of actions used
to safeguard the identity of system users, requiring their explicit consent for processing,
storage and transmission of sensitive data, the topic of information security is clearly dis-
tinguished since it refers to the protection of assets that are essential for the functionality
and purpose of the information system itself. In particular, information security ensures
the confidentiality, availability and integrity of information assets, while protecting them
from a wide range of threats [26]. It aims to guarantee system functionality and minimize
the risks and possible consequences associated with loss or leakage of these assets.

1.2 Methodology

For LightKone, information security is an important design and implementation aspect,
standing as a relevant concern that is transversal to all of the project’s use cases. The
purpose of this section is therefore to perform a security analysis that will allow us to un-
derstand the security threats and requirements for the project and for each of its particular
use cases.

In terms of methodology, we will conduct the security analysis by following a set of
steps. We will start by providing, for each use case, a high level system model overview in
which we will identify its main components, key functions and actors. Then, leveraging
these overviews, we will identify the assets to be protected and define each use cases’
security goals. Finally, we outline the security assumptions made, define our trust model,
and list potential threats and the adversary model considered.

93

CHAPTER 8. SECURITY ANALYSIS

2 Coordination between servers and data storage for the
Guifi.net monitoring system

System model
The system described in Sections 1 and 2 of Chapter 3 is composed of three main compo-
nents. First, there are thousands of nodes that collaboratively provide or consume various
network services (e.g. Internet connectivity). Their state and available resources need to
be monitored for the purpose of billing, capacity planning and service provision. This is
done by the second component of the system - the monitoring servers. They coordinate
with each other in order to distribute monitoring tasks and maintain a shared database
containing the results of monitoring. Finally, the main Guifi.net web and database server
aggregates and visualizes the data provided by the monitoring servers. It also maintains
the list of nodes to monitor which it shares with the monitoring servers.

There are several actors involved in the system. These are the system administrators
that control the central web and database server. They have full access to the nodes’
statistics and the list of nodes to monitor. Then, there are administrators of the monitoring
servers that have access to the shared database of monitoring results as well as to a pool
of monitoring tasks. Similarly, the owners and/or administrators of the network nodes
control available resources and the performance of the provided services.

Sensitive system assets and security goals
The main asset we are willing to protect is a shared database of the nodes’ status and per-
formance maintained by the monitoring servers and replicated at the central web server.
While the data in this database may be regenerated if lost, this could have negative effect
on the services that depend on its availability (e.g. network provisioning). The mapping
between the monitoring tasks and the monitoring servers responsible for those is also an
important asset. Every node in the network must be monitored by at least one monitoring
server and failure to do so might lead to late incident response and loss of potential profit.
The nodes’ status information as reported by network nodes is another essential asset of
the system. Our goal is to ensure the correctness and authenticity of this information and
its secure transmission and storage at the database. We also aim to protect the database
itself as well as the mapping between the monitoring tasks and the monitoring servers
responsible for those.

Assumptions and trust model
We assume the central web and database server administrators to be trusted and not ma-
liciously collude with the administrators of monitoring servers. The list of nodes to be
monitored that is provided by central server is assumed to be initially complete and con-
taining accurate nodes’ description.

Threat and adversary model
Within the described system we can identify several potential attackers. On the one
hand, the administrators of the nodes might tamper with the nodes’ settings and report

LightKone D2.1(v1.0), September 30, 2017, Page 94

CHAPTER 8. SECURITY ANALYSIS

fabricated information. By doing so, they might appear providing a better service and
thus attract more user traffic. Bogus data can also affect the network provisioning and
maintenance decisions. On the other hand, the monitoring servers’ administrators might
as well modify the monitoring data especially for the nodes they control. This could be
done for the purpose of improving their nodes’ statistics and/or lowering the statistics
of other nodes in the network. Additionally, they could abuse the monitoring tasks pool
by assigning themselves to the new tasks as they appear and immediately reporting fake
data. Considering that normally checking a node’s status takes some time, such technique
may potentially leave benign monitoring servers out of work. Consequently, this could
lead to data conflicts and ultimately to an unreliable monitoring service.

Security requirements
We outline the following security requirements for the described system:

• The system must ensure that each network node is monitored by at least two inde-
pendent monitoring servers for cross-checking. If any persistent divergence in the
reported data is detected the corresponding server must be flagged and reported.

• The system must protect the integrity of the monitoring database. All operations
must be logged and authenticated. The monitoring servers can only write or modify
the database entries for the nodes they were assigned to. Any modification of
monitoring data for other nodes must be forbidden.

• The status data reported by the network node must be checked for correctness,
integrity and authenticity before being added to the database. The monitoring soft-
ware running on the node must be protected and verified for each report.

• The monitoring tasks distribution must not only be fair and efficient but also abuse-
resistant. No monitoring server must be responsible for the majority of nodes.

• The system must be resistant to network partitions and database corruption. The
collected data should be persistent and remain available when any of the monitoring
servers fails or disconnects.

3 Service provision support for the Cloudy platform

System model
The system described in Section 3 of Chapter 3 relies on a network of nodes geograph-
ically distributed across the Catalonia region. Each of these nodes provides a certain
service to the rest of the network (e.g. Internet connectivity), and needs a way to adver-
tise it. At the same time the users of the network need a way to discover such services.
The designed system, therefore, aims to satisfy both of these needs. Through the use of
a distributed shared database each user and service provider can discover or advertise a
certain service. The database contains the up-to-date information on the offered services,
their providers, and additional information needed for accounting and billing.

LightKone D2.1(v1.0), September 30, 2017, Page 95

CHAPTER 8. SECURITY ANALYSIS

Sensitive system assets and security goals
The key asset to be protected is a service data which is stored in the distributed database.
The service data objects may be written and read by both users and service providers
(currently there is no limited access). We, therefore, aim to protect the integrity of the
database and ensure its availability.

Assumptions and trust model
We assume the services provided by the designed system and the data they operate with
to be out of this analysis’ scope. While some of the services might operate with sensitive
user data, we leave it for the service provider to address the potential security and privacy
issues.

Threat and adversary model
Within the threat model we can identify three potential attackers. On the one hand, there
are service providers who can deliberately modify the entries in the database in a way
so that users looking for a competitors’ services would be pointed to their ones. Such
an attack can lead to the profit loss of the respectful providers. Additionally, malicious
providers could delete the entries pointing the users to the competitors’ services, effec-
tively creating a monopoly in the network for certain services. Finally, the billing infor-
mation can be secretly manipulated in order to charge the users additionally after they
have already subscribed to the service (e.g. the service price, the amount of resources
used, etc.). On the other hand, the users might as well act maliciously and launch similar
attacks. The billing information might as well be changed to lower or avoid the service
bills. This way the users might be using the services without being charged for those.
Lastly, there are independent malicious entities that are willing to advertise and benefit
from the services that are not approved or supported by the network. This services might
be offered by unregistered users or providers and can be potentially insecure.

Security requirements
We define the following requirements for the designed system:

• The database must be protected from unauthorized access and manipulation. The
service providers must be able to change only the information about the services
they provide. The users must be able to view the service description but not modify
it. Any modification of the entries in the database must be logged and visible to
everyone. The users must be notified of any changes in the billing cycle or prices
of the services they consume.

• The integrity of the database must be guaranteed in order to avoid manipulation
of the service data in the process of writing to the remote database, as well as for
reading the data from the database.

• The system must be able to authenticate both service providers and service con-
sumers to avoid unapproved or unsupported service deployment and ensure accu-
rate billing and accounting.

LightKone D2.1(v1.0), September 30, 2017, Page 96

CHAPTER 8. SECURITY ANALYSIS

4 Pre-indexing at the edge

System model
The system described in Section 1 of Chapter 4 comprises several main components,
namely, client applications that write data to the storage system and retrieve the search
results, precomputing nodes at the edge that aggregate client requests and forward data to
higher levels of the system, and backend storage systems where the client data are stored.
The precomputing nodes also perform various computations on client data including en-
cryption, hash signature generation, indexing and index lookups.

Within the described system we can identify several main actors. First, there are users
of the system who upload their data and run queries over it. Second, the applications and
their corresponding developers that allow for efficient data management at the client side.
Third, the provider of the precomputing edge service and the service itself. Finally, the
cloud storage provider and maintainer and the service it provides.

Sensitive system assets and security goals
Having outlined the model of the system we can now identify its critical and most sensi-
tive assets. There are four main system assets we are willing to secure. The client data
and metadata may contain sensitive user information and must be treated with care at all
the stages of the operational cycle. At the same time, an index information and the results
of the client search queries, while not being sensitive per se, might provide insights useful
to the attacker. Finally, the authentication tokens for accessing cloud storage backends
must be stored securely as they might be used for unauthorised access to the application
data without the user consent. Considering all the described sensitive assets the design
of the system must protect the integrity and confidentiality of not only user data and
metadata, but also search queries results and access tockens for cloud storage services.

Assumptions and trust model
We assume the software and hardware platform where the client applications are exe-
cuted to be secure. We do not address attacks on user data performed by any malicious
applications running on the same platform that are not involved in the described use case
scenario. We also assume that the edge precomputing service provider does not mali-
ciously collude with the application developer or cloud storage provider.

Threat and adversary model
In this specific scenario, our threat model consists of malicious application developers
who try to exfiltrate or temper with sensitive user data. Having direct access to the
unencrypted data, such an adversary might leak it to unauthorized parties or modify it
according to his needs (e.g. avoid encryption process). At the same time, in case of
pre-encryption indexing, the edge node maintainer and service provider can perform the
same attacks. Edge node maintainer can also abuse its cloud storage access rights and
manipulate the data without the user consent. Cloud storage provider on the other hand,
can have unlimited and untracable access to the user data stored at his premises. In both

LightKone D2.1(v1.0), September 30, 2017, Page 97

CHAPTER 8. SECURITY ANALYSIS

cases the user data can be analyzed for user profiling, shared with third parties, or even
deleted. Finally, an external attacker can intercept and eavesdrop on the communication
between the client applications and the edge computing nodes, or between the edge nodes
and the cloud storage systems.

Security requirements

Considering the above threat model the security requirements for the described system
are as following:

• The system must provide defense mechanisms that prevent access to unencrypted
dataflows.

• The system must ensure availability of user data in case of network partitions and
partial data deletion.

• All the parties involved in the system must be authenticated and authorized by the
user

• The system must provide the ways for the user to verify the integrity of data at any
stage of processing.

5 Lambda functions at the edge

System model

The use-case scenario described in Section 2 of Chapter 4 shares a lot of similarities
with the previously described use case. The model of the system and its components
are mainly the same with the exception of additional component that is responsible for
executing various Lambda functions in response to certain events (e.g. new log file is
uploaded). It might be deployed along the edge precomputing node or run at the client
side.

This new component introduces additional member to the list of actors interacting
with the system. In this case it is an entity which writes the code of Lambda functions
and offers it to the system clients. The application developer or an edge computing
service provider both can provide such services. The user himself might be acting as this
entity if he or she has appropriate expertise in that.

Sensitive system assets and security goals

While the critical system assets defined in the previous section are still valid in this sce-
nario, the integrity of Lambda function code and its output results are additional assets
the system must protect. We also aim to ensure the confidentiality of the data generated,
consumed and transmitted within the system.

LightKone D2.1(v1.0), September 30, 2017, Page 98

CHAPTER 8. SECURITY ANALYSIS

Assumptions and trust model
Similarly, our assumptions and trust model from the previous scenario remained un-
changed. However, we add additional assumption that Lambda functions are running
in isolated sandboxed environments and cannot interact with each other. This is will
ensure that malicious version of the functions running side by side could not collude.

Threat and adversary model
In this scenario, our previously described threat model is complemented with an addi-
tional adversary. The malicious application developer or an independent entity publish-
ing custom Lambda functions can pose a threat to the system security. They can abuse
access to sensitive application data and trigger actions that might cause harm or financial
losses. They can perform denial-of-service (DoS) attack preventing the application and
potentially other service providers to operate as intended.

Security requirements
We define the security requirements for such use case scenario as following:

• Lambda functions’ actions must be properly logged and constantly verified for
compliance with the stated functionality.

• The access control system must ensure that the Lambda function has access only
to the resources needed for computation.

• The user data the function processes and acts upon must be properly protected from
tempering and eavesdropping.

6 S3 local cache of central data

System model
The system reviewed in Section 3 of Chapter 4 is similar to the one we have described
previously with a difference in the functionality of the edge node. In contrast to previous
scenario, the edge node performs local caching of read data objects and while being
closer to the client applications allows for faster writes operations. A client machine with
sufficient computing resources might perform these operations.

The list of actors in this specific use case scenario depends on the amount of entities
that have access to the edge node. Application developers and their corresponding ap-
plications, as well as system users themselves must be considered. In the situation when
caching takes place at a the edge node provided by the independent service provider (e.g.
cloudlets) this provider and its maintenance personnel are considered as additional actors.

Sensitive system assets and security goals
The personal user data and metadata cached at the edge is the main asset we wish to
protect. We aim to ensure the confidentiality and integrity of these data. We also aim to
secure the data in transit between the central data storage and a client cache.

LightKone D2.1(v1.0), September 30, 2017, Page 99

CHAPTER 8. SECURITY ANALYSIS

Assumptions and trust model
We assume that the client machines are protected from physical access by unauthorized
parties that could otherwise gain full control over the cached data. In cases when the
cache data is stored at the premises of a third party storage provider, we assume that the
application developers do not maliciously collude with this provider.

Threat and adversary model
Several malicious adversaries must be considered in the security analysis of this system.
The applications developers might configure their applications in way so that the cached
user data is leaked to a third party. The same developers might try to access the cached
data of other applications and either eavesdrop on it or manipulate with it according to
their interests and needs. On the other hand, the cached data stored outside of user’s
premises at a local third party storage, might be tampered or leaked to third parties.

Security requirements
Considering the described adversarial actions we define the security requirements for the
designed system:

• The system must ensure the integrity of the cached data at all stages of the appli-
cation’s life cycle.

• It should also prevent any unauthorized entity from eavesdropping on or tempering
with it. This involves protecting the data in transit and at a third party storage.

• The system must provide the ways for the user to verify the integrity of cached data
at any stage of processing.

7 No-Stop RFID

System model
Within this use case scenario a system described in Section 1 of Chapter 5 is composed
of the following components: the RFID tags that are moving on the conveyor belt, the
RFID readers that can read and write the data to and from the RFID tags, and a distributed
cache of RFID content featuring completed and missing steps. The readers communicate
with each other through Ethernet network by flooding all the latest updates to keep the
cache data consistent. Unfortunately, due to resource constraints of the readers this com-
munication is unencrypted and solely relies on efficiency of firewall rules at the higher
level of the network and physical access control at the factory.

Given a restricted environment of the factory premises the only actors constantly
interacting with the system are the factory workers. The RFID readers manufacturers
and firmware developers have limited access to the system during its deployment, testing
or upgrading.

LightKone D2.1(v1.0), September 30, 2017, Page 100

CHAPTER 8. SECURITY ANALYSIS

Sensitive system assets and security goals
The main and most important system assets we wish to protect is the cache data that must
not only be consistent from reader to reader, but must also be accurate. Any inconsistency
between the readers cache data might slow down the manufacturing process or even stop
it completely. Wrong or corrupted data in the cache may lead to broken products or even
physical damage to the machinery or personnel. We therefore seek to protect the integrity
of the cache data and ensure communication security.

Assumptions and trust model
We assume that the factory premises are protected from physical access by unauthorized
parties that could otherwise gain full control over the cached data.

Threat and adversary model
We consider several malicious adversaries in this use case scenario. First, the competitors
of the factory might be willing to intervene in the manufacturing process to intentionally
corrupt the products and/or gain the insights that can be of a commercial value. The
factory workers might be intentionally or unintentionally tampering with the cache data
and RFID readings. RFID readers manufacturers and their respective software devel-
opers might also carry a stealthy attack. There are several attack vectors by means of
which such attackers can exploit the vulnerabilities of the system. First, an attacker can
compromise the firewall and gain unrestricted access to the readers’ network. By having
access to this network an attacker can effectively launch DoS attack or manipulate the
data transmitted in clear text. While the DoS attack can slow down or stop the manu-
facturing process, the tampered cache data can cause damage. The malicious software
running on the RFID reader can be configured in a way so that it periodically skips one
or more production steps. Such an attack will be hard to detect, since it will not show
up during short-time debugging, and will eventually affect the quality of manufactured
products and company’s market value.

Security requirements
Considering the above attack vectors we define the following security requirements for
the system:

• The system must be able to protect the cache data from eavesdropping or manipu-
lating by unauthorized parties.

• The cache data must be consistent between the readers and delivered in a timely
manner.

• The communication between the readers must be secured and resistant to DoS
attacks.

• The system must provide a way for the factory owners to verify the authenticity of
RFID reader software and hardware.

LightKone D2.1(v1.0), September 30, 2017, Page 101

CHAPTER 8. SECURITY ANALYSIS

• Any modifications to the cache data must be detected and flagged without affecting
the manufacturing process.

8 Smart metering gateway

System model
The smart grid system described in Section 2 of Chapter 5 comprises the following com-
ponents: the smart meters that monitor resource consumption; the gateways that aggre-
gate the sensor readings reported by smart meters in their vicinity; and the cloud server
of service provider that orchestrates the gateways and meters. The gateways also com-
municate with each other and share collected meter readings for data aggregation and
thinning. Such design allows to achieve fault-tolerance and data savings. At the same
time, the gateway nodes may also act as actuators reacting to the changes in meter data.

We identify two actors involved in the system. These are the home owners whose
activity is monitored by the smart meters (e.g. electricity or water consumption), and
the service provider that installs gateways and meters, provides the desired service, and
charges users according to the resources they consume.

Sensitive system assets and security goals
For the described use case, the main system asset are the meter readings. They must
be accurate and represent the latest values measured. These readings aggregated at the
gateway nodes and a cloud backend are essential for the provided service. Timing is
also important, and while temporal delays in meters readings’ delivery might not affect
the billing cycle, they might be critical in cases when gateways act as actuators and
respond to changes in resources consumption. Additionally, meter readings represent a
highly sensitive information that might affect the privacy of their users when exposed
to unauthorized parties. The mapping between the meter readings, meters IDs and their
corresponding locations shared between the gateways and the cloud must be protected.
Overall, our goal is to ensure the integrity, availability and confidentiality of the metering
data.

Assumptions and trust model
We assume that gateway nodes’ manufacturers and firmware developers do not mali-
ciously collude with the service provider. We also assume that only service provider’s
employees have physical access to the gateway nodes.

Threat and adversary model
There are several potential attackers we can identify within this use case scenario. First,
the home owners who have physical access to smart meters might tamper with the meters’
hardware and software in order to lower utility bills. Alternatively, they can intercept
the meter to gateway communication and modify the reported values. Secondly, the
service provider might be leaking privacy sensitive information of its customers to the
third parties for targeted advertisement or new offers. The service provider can also

LightKone D2.1(v1.0), September 30, 2017, Page 102

CHAPTER 8. SECURITY ANALYSIS

configure smart meters to report higher consumption values to increase profits. Finally,
external attackers might intercept communication between the meters, gateways and the
cloud backend in order to manipulate the meter data in transit. Besides leaking these
data to third parties, the criminals might use it to predict when the customers are not at
home and plan their illegal activities accordingly. The attackers can also carry out a DoS
attack to jam communication between the gateways and the cloud backend or to exhaust
the gateway resources (e.g. wireless bandwidth). The software and configuration updates
might be another attractive target for the attacker. With the modified firmware update an
attacker can potentially gain full control over smart meters and/or gateways.

Security requirements
We therefore outline the following security requirements for the designed system:

• The system must provide the ways for service provider and a home owner to verify
the authenticity of the smart meters’ and gateways’ software.

• The authenticity of software updates for meters and gateways has to be verified at
install time.

• The smart meters must be able to verify the identities of the gateways they com-
municate with and visa versa. The same applies for the gateway to gateway and
gateway to cloud server communication.

• The communication between all the components of the system must be protected
from eavesdropping or manipulation by unauthorized parties.

• The system must ensure the authenticity, correctness and integrity of the reported
meter readings at all stages of processing.

• The meter readings must be properly anonymized to prevent utilities and third par-
ties from linking the collected data to the identities and locations of the customers
that generated them.

• The system must be able to withstand network partitions and provide fault-tolerance
against gateway failures.

• It must support high volumes of data from potentially thousands of meters and
ensure reliable data delivery to the service provider.

9 Agriculture sensing analytics

System model
The use case scenario described in Chapter 6 presents a sensor-based platform for preci-
sion agriculture which allows for collecting, analyzing and reacting to field sensor data in
near real time. It collects the readings from thousands of field sensor nodes and actuators,
aggregates these values at the edge gateway and finally sends them to the cloud service for
further processing. The cloud backend provides an interface for statistical analysis and

LightKone D2.1(v1.0), September 30, 2017, Page 103

CHAPTER 8. SECURITY ANALYSIS

data visualization, and creates rules and patterns for actuators using machine learning.
These rules are then uploaded back to the edge gateway which allows for local real-time
decision making and action without the cloud support.

The proposed system is planned to be used by several parties. Farmers rely on the
system to facilitate and automate the process of farming, generate agriculture analytics
and provide useful insights on their activity. Insurance companies review statistical data
in order to calculate a potential risk for an insured product (e.g. crops). Scientists and
researchers share trigger rules and patterns that allow for an optimized cultivation. Soft-
ware developers create applications for edge nodes and actuators to react to changes in
the environment according to the configured rules and patterns.

Sensitive system assets and security goals
There are several sensitive system assets that are essential for a functionality of the sys-
tem. The most important assets are raw and aggregated sensor readings. They are col-
lected and aggregated by the edge nodes, with backups stored in the cloud backend. The
whole system depends on availability, correctness and accuracy of these readings. Failure
to access and compute on readings within a certain time frame might lead to crop losses
or damage. Inaccurate sensor readings will affect data analytics’ utility and might trig-
ger erroneous actuator actions. Finally, inconsistent or a lack of sensor readings might
affect the decision of the insurance company. We therefore seek to protect the integrity
of sensor readings during their generation, transmission, storage and processing.

Additionally, the system depends on the correctness and integrity of rules and pat-
terns used by actuators to react to environmental changes. Poorly written or intentionally
manipulated rules might cause crop damage or even loss. The outdated or inaccurate pat-
terns might lead to wrong decisions made by farmers and insurers. The rules and patterns
must be protected from tampering in the same way the sensor readings are protected.

The connectivity between sensor nodes and gateways is essential for coordination and
computation on shared sensor data. Insecure or poor connectivity, or a lack of it, might
lead to inconsistent computation results, inaccurate statistics and erroneous actuators ac-
tions. We seek to protect the data in transmission and provide the means of authenticating
the communicating nodes.

Finally, the battery and bandwidth resources of the sensor and gateway nodes are
limited and must be used with care. Sensor nodes in the field are usually battery powered.
The power supply is thus limited and requires precise radio communications planning.
Constant transmissions will eventually deplete the battery resources effectively making
the sensor node useless. In case of GSM/3G/4G connectivity, wireless carrier might
charge the farmer according to the bandwidth consumed, so efficient bandwidth usage is
needed. Poorly written or malicious version of application running on the gateway node
might exhaust the bandwidth resources with constant transmissions. Our goal is to protect
the nodes’ resources from abusive actions and verify the authenticity of applications using
them.

Assumptions and trust model
We assume the hardware of sensor and gateway nodes to be trusted and operating as
stated in the specification sheets. At the same time, the developed system might be able

LightKone D2.1(v1.0), September 30, 2017, Page 104

CHAPTER 8. SECURITY ANALYSIS

to detect by means of fingerprinting if the original hardware has been modified without
the user consent.

Threat and adversary model
Potential attackers might be competitors of the system owner, application developers,
rules and patterns creators, cloud backend service and wireless connectivity providers.
The system owner himself might appear as an attacker. For instance, by manipulating the
statistical data before releasing it to the insurance company. Considering all the potential
attackers, we therefore define four possible attack surfaces: (1) sensor node software,
(2) gateway node software (applications, rules and patterns), (3) cloud backend, and (4)
external resources (e.g. wireless medium).

For a sensor node attack surface there could be several potential attacks. First, an
attacker might send crafted sensor reading to the gateway node to trigger certain automa-
tions that might have devastating effects on the crops. For instance, false high moisture
level sensor readings will cause the water pump to shut down and potentially cause se-
vere damage to crops. This attack might be possible if the software of the sensor node
is compromised by the attacker or node’s legitimate owner. At the same time, erroneous
sensor data might originate from uncalibrated or broken sensor.

Secondly, an attacker might manipulate the sensor node software so that it constantly
transmits sensor readings or any arbitrary data to the gateway node or other sensor nodes.
Such an attack will not only exhaust the scarce battery resources but will also effectively
overload the wireless medium with redundant messages preventing benign nodes from
communicating.

At the gateway node level, an attacker might configure a malicious version of the
gateway application to leak the sensor data to the competitors and other third parties.
Moreover, an attacker could reprogram the gateway to accept the commands from these
unauthorized entities. By modifying the rules and patterns it is also possible to manipu-
late the actuators state and affect the utility of the provided services. Finally, bandwidth
resources can be abused by the malicious application running on the gateway by gener-
ating significant volumes of traffic and causing higher bills.

Cloud backend can be vulnerable to several attack vectors. The database with all
the sensor readings collected during the whole period of system operation can be an
attractive target. By leaking the data from this database the competitors could get insight
information on the agriculture methods and techniques. Such information might be of
a commercial secret, thus leaking it might cause the company to loose its competitive
advantages on the market. An attacker could also control the state of actuators from the
cloud backend and send false administrative commands. Similarly to gateway and sensor
nodes attacks this can lead to severe damage or loss of the crops.

In all the attack surfaces mentioned above, we assumed the attacker to have access
to at least one of the system components. For some type of attacks this is however not
necessary. An attacker with sufficient resources and competence could carry a Denial-of-
Service (DoS) attack on wireless medium. By simply broadcasting radio signals on the
same frequency the nodes use for communication and overpowering the original signal,
an attacker can efficiently jam the network. This kind of attack will prevent the nodes
from communicating with each other and the gateway, leading to missing sensor readings
and, as a consequence, invalid actuators state. At the same time, an attacker could also

LightKone D2.1(v1.0), September 30, 2017, Page 105

CHAPTER 8. SECURITY ANALYSIS

intercept and replay legit actuator commands triggering certain actions. Finally, Internet
service provider that provides connectivity for a gateway node could perform a man-in-
the-middle attack and intercept the traffic to the cloud backend.

Security requirements
Considering all the described attacks, we define the requirements for the system to com-
ply with in order to prevent or minimize the risks from any of these attacks:

• Every node in the network must be identified and checked for any software or
hardware modifications before being added to the network. All nodes failing this
check must remain isolated from the rest of the network.

• The gateways must be able to identify the sensor nodes abusing the wireless and
battery resources and have ways to isolate those from the rest of the network.

• The system must prevent any changes to the sensor readings and the actuators com-
mands at the time they are generated, transmitted and processed. Any manipulation
with the data along the way must be detected and reported.

• The data generated by the system must be only accessible to the authorized entities
(e.g. network nodes, applications, system administrators). The system must ensure
secure communication channels and storage.

• The system must be robust and fault tolerant. It must adapt to changes in the
wireless environment and withstand the DoS attacks. Each communication channel
must be replicated to ensure data availability and timely delivery.

• The sensor data must be verified for correctness before the action is taken upon it.
The system must detect the deviations in the sensor reading reported by the sensors
that are close to each other, cross-check the values and discard suspicious readings.
Any repeated, conflicting or inconsistent actuators commands must be detected and
discarded as well.

LightKone D2.1(v1.0), September 30, 2017, Page 106

Chapter 9

Deep Learning

Deep learning is a branch of machine learning that attempts to model high-level abstrac-
tions in data by using deep neural networks (DNNs), which are layered architectures
based on multiple nonlinear transformations. In the last few years, deep learning has
achieved remarkable theoretical and practical success. It is able to achieve goals that
were long considered to be impossible. It is increasingly being applied in commercial
computing systems. Its use in data centers is well-known and ubiquitous, for example
in targeting advertisements, predicting user behavior, or providing an interactive voice
interface (e.g., Apple’s Siri). At the current time, barring a few exceptions, it is almost
always implemented in data centers because of its high computational and data needs.
The exceptions are recent and motivate this section. A prominent exception is the iPhone
X released in September 2017 which does on-phone deep learning computations to do
real-time three-dimensional face recognition. It is able to do these computations because
its custom A11 processor has targeted support for them.

In this section we give an overview of deep learning for nonexpert users, i.e., for those
who wish to use deep learning and are not themselves deep learning researchers, and
we explain how deep learning is becoming increasingly relevant for edge computation.
Several LightKone use cases have learning components, and it is likely that these learning
components will become increasingly important in the next few years. For brevity, we
assume basic knowledge of standard machine learning (classification and regression) as
can be obtained from many introductory articles (a particularly good introduction is given
in [15]). For an in-depth discussion of the topics of this chapter, we recommend the book
Deep Learning, published in 2016, which is the most comprehensive recent presentation
available at the time of submission of this deliverable [21].

Health monitoring: a killer app for deep learning on the edge
Personal health monitoring is an application of deep learning on the edge that is quickly
becoming a killer app. The goal of personal health monitoring is to continuously monitor
each human being for early signs of health problems, such as cancer, heart problems, and
degenerative diseases such as Alzheimer’s and Parkinson’s. The human is set up with
a personal sensor array that continuously monitors vital signs and sends data streams to
a set of personal computation nodes (a “personal data center”). These nodes analyze
the data streams and notify the human if any health problem appears. This analysis is
sophisticated; state-of-the-art systems that do such analysis run on data centers and use

107

CHAPTER 9. DEEP LEARNING

deep learning algorithms. For example, clinical studies are currently (in 2017) being done
for detecting signs of Parkinson’s disease using the accelerometer data from smartphones
and analyzing them in a data center [38]. Another recent example is the Apple Watch, for
which new software released in September 2017 is able to diagnose certain kinds of heart
ailments through data collected by the watch sensors. With the release of its HealthKit,
Apple is clearly betting on health monitoring and fitness as a major application area for
the Apple Watch.

The advantages of such an early monitoring system are numerous, both for improv-
ing users’ health and reducing healthcare costs (early treatment is almost always much
cheaper than late treatment). To make a reliable diagnosis, the analysis must continu-
ously do large computations on large data streams. It can be shown that the aggregate
computation and storage power of data centers are insufficient to do the analysis for all
human beings on earth. On the other hand, the number of edge devices and their compu-
tation and storage abilities are growing exponentially with time. J. Pereira predicts that
in 2027 there will be more than 1000 Internet of Things devices for each human being
on earth [35]. It follows that a natural place to do the computations for health monitor-
ing is directly on the edge. An increasing number of major companies have reached the
same conclusion, for example, Huawei and its Kirin 970 chipset (released in 2017) sup-
ports deep learning computations on mobile phones, as well as Nvidia’s recently released
Jetson TX2 deep learning processor for embedded systems, and Apple’s new A11 pro-
cessor in the recently released iPhone X. Nvidia used to be focused on building graphics
boards, but it has completely transformed itself into an AI company focused on building
high-performance processors for deep learning algorithms.

Acknowledgements and caveats

This section was written by Peter Van Roy, using material from the DeepLearn 2017
Summer School complemented by other sources and by contributions from the other
LightKone partners. While all the factual assertions in this section have been taken from
the work of experts and are assumed to be correct, the extrapolations on the future rele-
vance of deep learning to edge computing are specific to the LightKone project. Given
that LightKone is still at an early stage, we consider that thinking about the future is
highly important: it is essential for a project at the state-of-the-art such as LightKone to
make motivated extrapolations as to what will exist beyond the state-of-the-art, even if
we do not yet know how some of these extrapolations will be implemented.

Most of the material in this section (with a few exceptions) is summarized from the
lectures given at the DeepLearn 2017 Summer School, held in Bilbao, Spain, from July
17-21, 2017. This summer school was outstanding, both in the quality of the lectures and
in the number of attendees. There were more than 1300 attendees from all over Europe.
There were 28 lecturers, all of whom are either top researchers in deep learning, or top
researchers in an area that uses deep learning. These lecturers gave 86 lectures organized
in 3 or 4 parallel sessions.

LightKone D2.1(v1.0), September 30, 2017, Page 108

CHAPTER 9. DEEP LEARNING

1 Introduction to deep learning
Deep learning is a branch of machine learning that uses deep neural networks (DNNs)
to model high-level abstractions in user data. Subsection 1.1 first gives a high-level
overview from the viewpoint of a developer. Subsection 1.2 then explains what is mak-
ing deep learning successful now, when work has been going on in this area for several
decades. Subsection 1.3 elaborates on how to design a deep neural network. Subsec-
tion 1.4 gives an example of a practical DNN, namely AlexNet. Finally, subsection 1.5
concludes by comparing deep learning to other disciplines.

1.1 Three-step design process
A DNN consists of a set of building blocks combined into a sequence of layers. Building
a practical DNN consists of three steps:

1. Design. The first step is to determine which building blocks to combine and in
which order to combine them.

2. Training. The second step is to determine the parameters in the building blocks.
The layers in between the input and output layer are commonly called hidden lay-
ers. The training step therefore determines the values of the parameters in the
hidden layers. This is done by running a computation-intensive training algorithm
with a large set of training data for which the output is known. This is called
supervised learning and is currently the most common training approach used.

3. Inference. The third step is to use the DNN in an application. This also requires
significant computation, since the layered system can contain a large number of
elements and many nonlinear functions connecting them. But it is much less
computation-intensive than training because it is straight line code (no iteration
over many examples, like in training).

1.2 Why is DL successful now and not before?
It is legitimate to ask why deep learning has become successful now and not earlier. What
has changed now with respect to the past? To explain this, let us first give a brief history
of neural network research. There are three main periods. The first period ended around
1969, when Minsky and Papert analyzed an early form of neural network called a per-
ceptron. They showed that a single-layer perceptron could not do many important tasks,
such as the XOR function or determining whether a curve in two-dimensional space is
connected or not. Because of this, research in neural networks was essentially abandoned
for a decade. The second period started in the 1980s. There was a resurgent interest in
neural networks because of the popularization of the backpropagation algorithm for train-
ing hidden layers. However, the vanishing gradient problem, which shows that training
hidden layers becomes more and more difficult as the number of layers increases, again
caused neural network research to languish. Finally, we come to the third period of pop-
ularity, which is considered to have started around 2012 and continues to the present day.
The current period is characterized by three properties:

LightKone D2.1(v1.0), September 30, 2017, Page 109

CHAPTER 9. DEEP LEARNING

1. Training needs massive computing power. The massive parallel computation power
needed by current training algorithms is now generally available through GPUs.
GPUs were originally designed for high-performance graphics (“Graphics Process-
ing Unit”), but they are now used very successfully for training DNNs. Still, even
with fast GPUs, training often takes from hours to days.

2. Backpropagation can train the hidden layers of a DNN. The backpropagation al-
gorithm can theoretically train the hidden layers, but in order to make this practical
three modifications are currently used:

• All the nonlinear functions in the DNN are differentiable. Typically, it is im-
portant to model discontinuous (step function) or piecewise continuous func-
tions (rectifiers), so smooth versions of these functions are used.

• The backpropagation algorithm uses the chain rule for differentiation together
with gradient search to determine the hidden parameters. This works because
a DNN is mathematically just a composition of nonlinear functions.

• The architecture of the layers is designed to avoid the vanishing gradient
problem. For example, the LSTM (Long Short-Term Memory) is a train-
able memory cell. The discovery of the LSTM in the 1990s was a major step
toward overcoming the vanishing gradient problem.

3. An increasing number of highly visible successes. We give three examples of suc-
cesses that were highly mediatized:

• The IBM Watson natural-language question answering system competed on
the Jeopardy! TV game in 2011 and won $1 million against former human
champions.

• Real-time voice translation between English and Chinese was demonstrated
by Rick Rashid, then head of Microsoft Research, in 2012 with an error rate
of only 7%, far less than previous systems.

• AlphaGo, combining deep learning and Monte Carlo tree search, won a three-
game Go match in 2017 against the world’s number one human player, Ke Jie.

1.3 Introduction to the design of a deep neural network
This section gives a technical summary of how to design a deep neural network. It is
intended as a starting point for a LightKone developer who wishes to investigate the use
of DNNs in his or her edge application. A deep neural network consists of a series of
layers. Each layer has a matrix (or vector) of variables (which are real numbers). Layers
are pairwise connected through transformation functions. If there are n layers in all, the
first layer is called input layer, the final layer is called output layer, and the n� 2 other
layers are called “latent” or “hidden” layers. The transformation functions can either be
linear or nonlinear. Each transformation function is parameterized by a weight matrix (or
vector) that needs to be determined in the training phase for successful operation of the
DNN. Designing a successful DNN has two main parts:

• Determining the meaning of each layer and the transformation functions connect-
ing layers. This is a difficult design problem, comparable to algorithm design.

LightKone D2.1(v1.0), September 30, 2017, Page 110

CHAPTER 9. DEEP LEARNING

New and successful designs are still considered worthy of conference publication.
There is a lot of folklore regarding design principles for this part, but no mature
methodology yet. There is no substitute for experience.

• Training each transformation function. Training determines values for the coeffi-
cients of the weight matrices. This is commonly done by means of a training set,
i.e., a large set of inputs for which correct outputs are known. Training is done by
the backpropagation algorithm, which is a form of stochastic gradient descent that
works as follows. A training item is fed to the DNN and the output is computed
from the input to the output layer. At the output layer, the output is compared
to the correct output. The differences between the computed and correct output
are propagated backwards from the output layer towards the input layer. During
this propagation, the algorithm modifies each coefficient in the weight matricies to
make the computed output become closer to the correct output. The modifications
are computed using the chain rule for differentiation. It is observed empirically
that learning typically proceeds in two stages: first, a short “fitting” stage, where
the network learns to correctly identify the input items, and second, a much longer
“compression” stage, during which the network becomes good at generalization
(“diffusing” its correct identifications through the space of possible inputs).

The most important transformation functions are:

• Convolution. Input and output layers are matrices, and each output value is a linear
function of neighboring input values. Convolution is inspired by the visual cortex
of the brain. It does feature extraction, i.e., it can transform an image containing
only pixels into an image with edge, shape, or complex object detection. Using
several successive convolutional layers gives more and more sophisticated features,
up to whole objects. Many practical DNNs have several convolutional layers in
the early stages, in order to raise the abstraction level of the input before other
transformations are done.

• Full connection. Each output vaue is a linear function of all input values. This is
not scalable in general; it is typically used only near the output of a DNN, where
the size of the layers has been reduced.

• ReLu (Rectified Linear Unit). This is a differentiable version of a rectifier, where
a rectifier is defined so that each output value is 0 is the corresponding input is
negative, otherwise it is equal to the input.

• LSTM (Long Short-Term Memory). Each output value is a smooth nonlinear func-
tion of the previous output value and the corresponding input value. This provides
a memory cell. To control the cell, the input, memory, and output are all gated
using smooth functions. An LSTM can be seen as a memory cell that is designed
in such a way that it is trainable using backpropagation.

• Maxpooling, averagepooling, and subsampling. When the input is a two-dimensional
matrix, the output matrix is smaller in both dimensions than the input by factors
k⇥ l. With maxpooling each output value is the maximum of the corresponding
k⇥ l input submatrix. It is called averagepooling if the output is the average of the

LightKone D2.1(v1.0), September 30, 2017, Page 111

CHAPTER 9. DEEP LEARNING

inputs, and subsampling if the input weights are learned. This is a way to reduce
the data size without reducing output quality (if done right).

• Softmax. The softmax function is most often used in the last stage. It does an
elementwise normalization: it returns a vector of values that are normalized so
all add up to 1. It first does an exponential of input values before normalization.
The exponential is important because it will separate otherwise close coefficients.
Semantically, it makes the output be probabilities, if the inputs are energy values
in a statistical model.

Several easily available software packages exist for designing and training deep neural
networks. We mention Caffe, which is simple and fast but limited to its built-in function-
ality. PyTorch and TensorFlow are flexible toolboxes that support simple development
and complex neural network topologies. Theano is a library optimized for high per-
formance. Several libraries, including PyTorch and TensorFlow, provide a convenient
syntax using pipe notation to define multilayer DNNs. This is highly expressive and can
express most of the historically important DNNs in just one or two lines of code. To gain
understanding in the design of DNNs, it is highly recommended to download one of these
packages and experiment with it.

Figure 1.1: Architecture of the AlexNet deep neural network

1.4 AlexNet: a practical deep neural network
AlexNet is a deep convolutional neural network that classifies high-resolution images.
The information about AlexNet in this section is summarized from [29]. This network
was entered in the 2012 ILSVRC, an annual competition of image classification with
1.2 million images. It achieved the best score with an error rate of 15.3%, compared to
26.2% for the second-best entry. Since then, the techniques used in AlexNet have been
improved, resulting in even lower error rates for more recent DNNs.

Figure 1.1 shows the architecture of AlexNet; this figure explicitly shows how the
computations are partitioned between the two GPUs used for training. The GPUs com-
municate only at certain layers. Two GPUs were necessary because the network was too
big to fit on a single GPU. The DNN contains eight layers with weights; the first five
are convolutional and the remaining three are fully-connected. All layers are necessary;
removing even one layer results in reduced performance. The last fully-connected layer

LightKone D2.1(v1.0), September 30, 2017, Page 112

CHAPTER 9. DEEP LEARNING

is fed to a 1000-way softmax, which produces a distribution over the 1000 class labels.
The full DNN has 60 million parameters that need to be learned; several innovative tech-
niques were used to reduce so many parameters without overfitting. AlexNet shows that
a large, deep convolutional network is capable of achieving record-breaking results using
purely supervised learning.

1.5 Deep learning compared to other disciplines
One of the surprising properties of deep learning as an engineering discipline is that it
subsumes good solutions in many traditional areas. If the underlying layers are well-
chosen, then the training process will automatically pick a reasonable solution from a
lower level. Consider the following traditional areas:

• Traditional computer vision view. All the major results in computer vision can
be reformulated as simple DL pipelines that can be executed in popular DL soft-
ware frameworks such as PyTorch or TensorFlow. For example, John Canny’s
influential work on noisy step edge detection can be reformulated as the sim-
ple pipeline CI(1,33) | Sigmoid(), namely a convolution followed by a
sigmoidal function. Perhaps surprisingly, training automatically “discovers” the
clever tricks used by Canny in the hidden layers.

• Traditional computer algorithm view. Neural networks can be viewed as Boolean
circuits. The revival of neural networks in the 1980s was made possible by the
replacement of hard nonlinearities (piecewise nondifferentiable) by soft nonlinear-
ities (smooth functions such as sigmoid), which are trainable and can converge
back to hard ones during training. This means that many traditional computer sci-
ence algorithnms (e.g., shortest path in a graph) will “emerge” automatically from
the DNN after it is trained.

• Pattern recognition and traditional ML view. Traditional machine learning such
as classification and regression is subsumed by deep learning. Traditional trans-
forms, such as PCA (Principle Component Analysis), will appear automatically in
a properly designed DNN pipeline during training.

• Signal processing view. Traditional properties for signal processing, such as trans-
lation invariance, are obtained by training a properly designed DL pipeline. Both
linear and nonlinear filters are obtained simply by properly structuring the DNN
layers. For example, a convolutional layer is a linear filter and maxpooling is a
nonlinear filter.

• Decision theory view. Consider a DL system as a black box that outputs probabili-
ties. After training, it can provide a solution that is optimal according to Bayesian
analysis.

The main problems to solve when designing a DNN are (1) the structure and features
of the pipeline (the DNN layers), and (2) the training data and training approach. Given
that these two are properly chosen, then training will come up with reasonable solutions
that are comparable in performance to best-of-breed algorithms in each traditional view.

LightKone D2.1(v1.0), September 30, 2017, Page 113

CHAPTER 9. DEEP LEARNING

Furthermore, it will come up with good solutions that combine ideas from different tra-
ditional views. Is deep learning then all you need? According to Nvidia deep learning
researcher Thomas Breuel, the answer is surprisingly close to a yes.

Deep learning as part of software engineering

Given the observations of the previous section, it is clear that the design of a deep learning
system can be seen as a form of software engineering. In traditional software develop-
ment, the design of data structures, algorithms, and architecture (e.g., object-oriented de-
sign) is very important. Given the increasing success and applicability of deep learning,
it is clear that many applications will have learning components inside. These learning
components need only a training phase to be successful, and there is now enough comput-
ing power generally available to make this possible. In effect, traditional software design
is replaced by deep learning design, and the training phase is a form of compilation,
analogous to the compilation of an application’s source code.

The conclusion is that the design of deep learning components will eventually become
a general subfield of software engineering. The design of a learning component requires
determining the features (abstractions) to be learned, and the architecture (pipeline) of the
layers of a DNN. There does not yet exist a mature methodology for this kind of design
(only bits and pieces exist), but we can expect such a methodology to emerge in the near
future. Ideally, it should then become part of the software engineering curriculum and
be taught to all computer science students. In the context of LightKone, this points to
an ever increasing use of deep learning computations, which means that we should keep
alert to the addition of these computations to our edge computing model.

2 Relevance of deep learning to LightKone use cases
The LightKone use cases are presented in detail in this deliverable. Several of these use
cases as presented in the deliverable have a learning component, as briefly summarized
below:

• Agriculture sensing analytics (such as winery management) (Gluk): this is based
on sensor data streams, which are used for predictions, recommendations, and de-
cision making.

• Community network monitoring (Guifi): the monitoring is used for management
(including decision making) and analytics.

• Petascale database with intelligent queries (Scality): this database requires pre-
indexing at the edge and lambda functions at the edge, which are important in the
context of content-based search, image analysis.

• Distributed online planning for automated manufacturing (Stritzinger): the plan-
ning algorithm must monitor the environment in the factory and adapt the plan
accordingly, in real time.

All these examples do significant computation with a learning component. The questions
to be answered in LightKone are, how should these computations be spread between an

LightKone D2.1(v1.0), September 30, 2017, Page 114

CHAPTER 9. DEEP LEARNING

edge network and a data center, and how can the edge computations be done efficiently?
We expect that as the project advances, these use cases will evolve to use more learning,
since learning technology is being successfully applied more and more in edge comput-
ing. It is clear that the use cases in this document are just a starting point, and that we
will follow their development as our technology progresses.

In the following subsections, we focus on several aspects of deep learning and edge
computing that cut across the use cases.

2.1 Computation model requirements for deep learning
The first requirement on the edge computing model is that it must support the inference
phase of deep learning. Recently introduced edge computing devices (see the health
monitoring example discussed earlier) have hardware support for these computations.
The vast majority of computations done in the inference phase are of two kinds: matrix
operations on numeric data vectors, and elementwise smooth nonlinear functions on data
vectors. Typical nonlinear operations are softmax, tanh, and sigmoid: these are smooth
(sometimes called “soft”) approximations to discontinuous functions and combinations
of exponentials, parametrized so that the approximation is more or less precise.

Inferencing does not need loops; it is straight line code without conditionals or loops
(except for LSTMs, which contain small loops inside one layer that implement a mem-
ory). Training on the other hand has a convergence criterium and uses many optimiza-
tions to reduce computation time (implying large numbers of conditionals and loops).
While the inner loop of training is straight line code like inferencing, controlling it re-
quires a full set of operations. Training is usually embarrassingly parallel, except for
RNNs (Recursive Neural Networks) and LSTMs that are iterative and therefore less par-
allelizable than CNNs (Convolutional Neural Networks).

We now give a formal characterization of the computation done in the inference
phase. Given a DNN with n layers a1 to an, where each ai is a vector or matrix of real
numbers. The input layer is a1, the output layer is an, and the n�2 remaining layers are
the hidden layers. Then the DNN is characterized by n� 1 transformation functions f1
to fn�1, where the function fi computes ai+1 given ai and a parameter pi. The parameter
is a vector or matrix that is computed during the training phase. In brief, the inference
phase computes an given a1 according to the following rule:

ai+1 = fi(ai, pi) 1 i < n

If all parameters pi are fixed, then this is a pure function from a1 to an. Since it has no
internal state, computing this function does not need to use convergent computation (such
as Lasp) to achieve high availability. It can be computed with traditional non-convergent
dataflow techniques, for example by Naiad [34]. Because the ai almost always have large
numbers of components, this is an embarrassingly parallel computation. Any failures or
stragglers can be handled by simply repeating the computation.

In practical applications (such as Apple’s three-dimensional face recognition in the
iPhone X), the DNN adapts to slowly changing inputs, which means that the parameters
are slowly changing over time and that occasional bursts of training are needed to up-
date them. In this case, convergent techniques may be used to keep track of parameter
changes. Common choices for the functions fi are given in Section 1.3. Typically, for
early layers (low values of i) this is a (linear) convolution or maxpool, for intermediate

LightKone D2.1(v1.0), September 30, 2017, Page 115

CHAPTER 9. DEEP LEARNING

layers this is a nonlinear function, and for the final layer a softmax can be used if the
output is a vector of probabilities.

2.2 Generalized convergence property
There is a convergence property in our edge computation model and in deep learning.
We currently have a prototype edge computation model called Lasp [31]. Because of
its theoretical design, Lasp naturally does convergent computing: despite intermittent
failures in the underlying edge network and its nodes, the computation is guaranteed
to converge to a correct result if the network satisfies a connectivity property that is
obtained by the implementation’s hybrid gossip layer. Failures of part of the system
have no effect on correctness; their only effect is to slow down convergence. In deep
learning, there is also a convergence concept. When training is done correctly, the DNN
improves with time and asymptotically converges to the best DNN possible given the
training data and DNN structures. Note that randomness is part of the training data. This
seems to imply that training could be done on unreliable networks and still converge.
One of the evolutions of Lasp that we are discussing in LightKone is the addition of
probabilistic operations, which would make the correctness probabilistic but will still
converge. Training a DNN seems to be an interesting example case for this extension.

2.3 Training on edge networks
As we mentioned before, in 2027 there are predicted to be more than 1000 devices per
person in the generalized IoT (as estimated by Jorge Pereira at NetFutures 2017) [35].
Many of these devices will be low power. These devices and their networks will be fre-
quently offline or off, and only active when necessary. Some of these devices could be
nodes with high computational power that can be used to do occasional intensive compu-
tation on an edge network. For example, Nvidia has recently announced the Jetson TX1
and TX2 modules, which are high-performance GPUs designed for embedded systems.
This means that we would not be limited to doing training in a data center and inferencing
on the edge, but that we could train directly on the edge. This will become increasingly
important in future systems, where training and inferencing will be interleaved and run
on the same system, in order to continuously adapt the system to its environment. This
is exactly how the human brain works, and brain research continues to inspire DL re-
search. The current situation, in which training is a large block of computation that is
done infrequently and separately from inferencing, is temporary.

2.4 Data protection and anonymization
Deep learning is being used successfully for data anonymization. The basic idea is to
train the DNN using real data, and then to use the trained system to generate fake data
with the same abstract properties as the real data. (It is a general property of DNNs that
they can be used both for identification and generation of input data.) This technique has
been used for generating fake patient records in healthcare applications. The fake records
are indistinguishable by doctors from real records. This works because the deep learning
system able to represent the high-level features of the data, and not just the superficial
statistical properties. This technique could be useful for the anonymization necessary for

LightKone D2.1(v1.0), September 30, 2017, Page 116

CHAPTER 9. DEEP LEARNING

evaluating the LightKone use cases with realistic user data (see the discussion of data
protection in this deliverable).

LightKone D2.1(v1.0), September 30, 2017, Page 117

CHAPTER 9. DEEP LEARNING

LightKone D2.1(v1.0), September 30, 2017, Page 118

Bibliography

[1] CEN/TC 294. Communication systems for meters and remote reading of meters -
part 3: Dedicated application layer. EN 13757-3:2013, European Committee for
Standardization, 2013.

[2] CEN/TC 294. Communication systems for meters and remote reading of meters -
part 4: Wireless meter readout (radio meter reading for operation in SRD bands).
EN 13757-4:2013, European Committee for Standardization, 2013.

[3] Arduino. Open-source electronics platform . https://www.arduino.cc, 2017.

[4] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software
Errors. PhD thesis, The Royal Institute of Technology, Stockholm, Sweden, De-
cember 2003.

[5] Tomas Aronsson, Johan Grafström, and Ericsson Telecom AB. A comparison be-
tween Erlang and C++ for implementation of telecom applications. LiTH/IDA, 05
2000.

[6] R. Baig, J. Dowling, P. Escrich, F. Freitag, R. Meseguer, A. Moll, L. Navarro,
E. Pietrosemoli, R. Pueyo, V. Vlassov, and M. Zennaro. Deploying clouds in the
Guifi community network. In 2015 IFIP/IEEE International Symposium on Inte-
grated Network Management (IM), pages 1020–1025, May 2015.

[7] Roger Baig, Lluı́s Dalmau, Ramon Roca, Leandro Navarro, Felix Freitag, and
Arjuna Sathiaseelan. Making community networks economically sustainable, the
Guifi.Net experience. In Proceedings of the 2016 Workshop on Global Access to
the Internet for All, GAIA ’16, pages 31–36, New York, NY, USA, 2016. ACM.

[8] Roger Baig, Ramon Roca, Felix Freitag, and Leandro Navarro. Guifi.Net, a crowd-
sourced network infrastructure held in common. Comput. Netw., 90(C):150–165,
October 2015.

[9] Peter Bailis, Shivaram Venkataraman, Michael J. Franklin, Joseph M. Hellerstein,
and Ion Stoica. Probabilistically bounded staleness for practical partial quorums.
PVLDB, 5(8):776–787, 2012.

[10] Bhavya Banga. Global nanosatellite market anticipated to reach $6.35 billion
by 2021, reports BIS research. http://www.prnewswire.com/news-releases/
global-nanosatellite-market-anticipated-to-reach-635-billion-by-2021-reports-bis-research-629891843.
html, Jun 2017.

119

https://www.arduino.cc
http://www.prnewswire.com/news-releases/global-nanosatellite-market-anticipated-to-reach-635-billion-by-2021-reports-bis-research-629891843.html
http://www.prnewswire.com/news-releases/global-nanosatellite-market-anticipated-to-reach-635-billion-by-2021-reports-bis-research-629891843.html
http://www.prnewswire.com/news-releases/global-nanosatellite-market-anticipated-to-reach-635-billion-by-2021-reports-bis-research-629891843.html

BIBLIOGRAPHY

[11] Joshua Buck. CubeSat to demonstrate miniature laser com-
munications in orbit. https://www.nasa.gov/press-release/
cubesat-to-demonstrate-miniature-laser-communications-in-orbit, Octo-
ber 2015.

[12] Sarah Darby. Smart metering: what potential for householder engagement? Build-
ing Research & Information, 38(5):442–457, 2010.

[13] DFKI. SmartF-IT project. http://www.smartf-it-projekt.de/?lang=en, Sep 2017.

[14] E. Dimogerontakis, J. Neto, R. Meseguer, L. Navarro, and L. Veiga. Client-side
routing-agnostic gateway selection for heterogeneous wireless mesh networks. In
2017 IFIP/IEEE Symposium on Integrated Network and Service Management (IM),
pages 377–385, May 2017.

[15] Pedro Domingos. A few useful things to know about machine learning. Communi-
cations of the ACM, 55(10):78–86, October 2012.

[16] EU. The Protection of Private Data Directive 95/46/EC. http://eur-lex.europa.eu/
legal-content/EN/TXT/?uri=celex:31995L0046, 1995.

[17] EU. The EU General Data Protection Regulation (GDPR). http://www.eugdpr.org,
2017.

[18] Raspberry Pi Foundation. Open-source electronics platform .
https://www.raspberrypi.org, 2017.

[19] Fujitsu. MBR89R112A, ISO/IEC 15693 compliant FRAM embedded high-speed
RFID. http://www.fujitsu.com/uk/Images/MB89R112A-B.pdf, Aug 2016.

[20] Fujitsu. FRAM radio frequency identity chip (RFID). http://www.fujitsu.com/uk/
products/devices/semiconductor/memory/fram/rfid/, Sep 2017.

[21] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
November 2016.

[22] Rexroth Bosch Group. Transfer systems from Rexroth.
https://www.boschrexroth.com/en/gb/products/product-groups/
assembly-technology/material-and-information-flow-technology/
material-and-information-flow-technology, Sep 2017.

[23] ISO. ISO/IEC 15693-2:2006 Identification cards – Contactless integrated circuit
cards – Vicinity cards – Part 2: Air interface and initialization. https://www.iso.
org/standard/43467.html, 2006.

[24] ISO. ISO/IEC 15693-3:2009 Identification cards – Contactless integrated circuit
cards – Vicinity cards – Part 3: Anticollision and transmission protocol. https:
//www.iso.org/standard/43467.html, 2009.

[25] ISO. ISO/IEC 15693-1:2010 Identification cards – Contactless integrated circuit
cards – Vicinity cards – Part 1: Physical characteristics. https://www.iso.org/
standard/39694.html, 2010.

LightKone D2.1(v1.0), September 30, 2017, Page 120

https://www.nasa.gov/press-release/cubesat-to-demonstrate-miniature-laser-communications-in-orbit
https://www.nasa.gov/press-release/cubesat-to-demonstrate-miniature-laser-communications-in-orbit
http://www.smartf-it-projekt.de/?lang=en
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31995L0046
http://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex:31995L0046
http://www.eugdpr.org
https://www.raspberrypi.org
http://www.fujitsu.com/uk/Images/MB89R112A-B.pdf
http://www.fujitsu.com/uk/products/devices/semiconductor/memory/fram/rfid/
http://www.fujitsu.com/uk/products/devices/semiconductor/memory/fram/rfid/
https://www.boschrexroth.com/en/gb/products/product-groups/assembly-technology/material-and-information-flow-technology/material-and-information-flow-technology
https://www.boschrexroth.com/en/gb/products/product-groups/assembly-technology/material-and-information-flow-technology/material-and-information-flow-technology
https://www.boschrexroth.com/en/gb/products/product-groups/assembly-technology/material-and-information-flow-technology/material-and-information-flow-technology
https://www.iso.org/standard/43467.html
https://www.iso.org/standard/43467.html
https://www.iso.org/standard/43467.html
https://www.iso.org/standard/43467.html
https://www.iso.org/standard/39694.html
https://www.iso.org/standard/39694.html

BIBLIOGRAPHY

[26] ISO. ISO/IEC 27000:2016 Information technology – Security techniques – Infor-
mation security management systems – Overview and vocabulary. https://www.
iso.org/standard/66435.html, 2016.

[27] ISO/IEC. Intermediate system to intermediate system intra-domain routeing infor-
mation exchange protoco. https://www.iso.org/standard/30932.html, 2002.

[28] Gottfried Konecny. Small satellites—tool for Earth observation? In XXth ISPRS
Congress, pages 580–582, January 2004.

[29] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. ImageNet classification
with deep convolutional neural networks. In Advances in Neural Information Pro-
cessing Systems 25 (NIPS 2012), pages 1097–1105, 2012.

[30] AWS Lambda. What is AWS Lambda? http://docs.aws.amazon.com/lambda/
latest/dg/welcome.html. Accessed: 2017-09-28.

[31] Christopher Meiklejohn and Peter Van Roy. Lasp: A language for distributed,
coordination-free programming. In Proceedings of the 17th International Sympo-
sium on Principles and Practice of Declarative Programming (PPDP 2015), pages
184–195. ACM, 2015.

[32] Microsoft. Microsoft Azure Cloud Computing Platform & Services . https://azure.
microsoft.com/en-us/, 2017.

[33] Vivek Mohan. An introduction to wireless M-Bus. http://pages.silabs.com/
an-introduction-to-wireless-mbus.html, June 2015. Last accessed 2017-09-28.

[34] Derek G. Murray, Frank McSherry, Rebecca Isaacs, Michael Isard, Paul Barham,
and Martı́n Abadi. Naiad: A timely dataflow system. In Proceedings of the 24th
ACM Symposium on Operating Systems Principles (SOSP ’2013), pages 439–455,
November 2013.

[35] Jorge Pereira, Frank Fitzek, Ingrid Moerman, Luiz daSilva, Antonio Fuganti, and
Linda Doyle. Mobile connectivity: How will the ’edge’ look like in 2027? (panel
discussion). In Net Futures 2017: Conference on Internet, the economy, and society
in 2027, Brussels, Belgium, June 2017.

[36] Fang-Ching Ren, F.-S Zhang, Jian Hui Bao, Bo Chen, and Y.-C Jiao. Compact
triple-frequency slot antenna for wlan/wimax operations. Progress In Electromag-
netics Research Letters, 26, 01 2011.

[37] M. Selimi, L. Cerdà-Alabern, M. Sánchez-Artigas, F. Freitag, and L. Veiga. Prac-
tical service placement approach for microservices architecture. In 2017 17th
IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing (CC-
GRID), pages 401–410, May 2017.

[38] C. Stamate, G. D. Magoulas, S. Kueppers, E. Nomikou, I. Daskapoulos, M. U. Lu-
chini, T. Moussouri, and G. Roussos. Deep learning Parkinson’s from smartphone
data. In Proceedings of the 2017 IEEE International Conference on Pervasive Com-
puting and Communications, Kona, HI, March 2017.

LightKone D2.1(v1.0), September 30, 2017, Page 121

https://www.iso.org/standard/66435.html
https://www.iso.org/standard/66435.html
https://www.iso.org/standard/30932.html
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
http://docs.aws.amazon.com/lambda/latest/dg/welcome.html
https://azure.microsoft.com/en-us/
https://azure.microsoft.com/en-us/
http://pages.silabs.com/an-introduction-to-wireless-mbus.html
http://pages.silabs.com/an-introduction-to-wireless-mbus.html

BIBLIOGRAPHY

[39] Phil Trinder. Comparing C++ and ERLANG for Motorola telecoms software. In
Proceedings of the 2006 ACM SIGPLAN Workshop on Erlang, ERLANG ’06, pages
51–51, New York, NY, USA, 2006. ACM.

[40] Marek Zawirski, Annette Bieniusa, Valter Balegas, Sérgio Duarte, Carlos Baquero,
Marc Shapiro, and Nuno M. Preguiça. Swiftcloud: Fault-tolerant geo-replication
integrated all the way to the client machine. CoRR, abs/1310.3107, 2013.

LightKone D2.1(v1.0), September 30, 2017, Page 122

Appendix A

List of Acronyms

API Application Programming Interface
ARM Advanced RISC Machines
CN Community Network
CPE Customer Premises Equipment
DB database
DC datacenter
EC Eventual Consistency
GNU GPL GNU General Public License
HTTP Hypertext Transfer Protocol
HTTPS HTTP over TLS
IoT Internet of Things
IP Internet Protocol
JSON JavaScript Object Notation
LDAP Lightweight Directory Access Protocol
M-Bus Meter-Bus
OS Operating System
PC Personal Comupter
REST Representational state transfer
RRD Round-Robin Database
RTEMS Real-Time Executive for Multiprocessor Systems
RTOS Real Time Operating System
RTT round-trip time
SBC Single-Board-Computer
SLA Service Level Agreement
SME Small and Medium Enterprise
TCP/IP Transmission Control Protocol (TCP) over Internet Protocol (IP)
TLS Transport Layer Security
VM Virtual Machine
VPN Virtual Private Network
VPS Virtual Private Server
WM-Bus Wireless M-Bus

123

APPENDIX A. LIST OF ACRONYMS

LightKone D2.1(v1.0), September 30, 2017, Page 124

Appendix B

Questionnaire

1 Overview of the use case
Provide here a short and general description of the use case including:

• The context.

• The environment description where the use case is to be deployed.

• A justification of its relationship with edge computing (i.e, what are the benefits
that are expected by addressing this within the Lightkone project..

• What are the most common types of computations are you expecting to have in this
use case.

• What are the key challenges.

2 Current development
Explain if the use case being proposed here is already materialized in an early version.
If so, explain what is its current state, what are the issues that one aims at addressing.
Furthermore, if the use case is already implemented fill in the following subsubsections
(other wise remove them).

2.1 Conflicting operations
Are there operations that manipulate the state of your application that cannot be executed
without some form of coordination?

2.2 Invariants that exist in the application state
Does the state of your application contains invariants that cannot be violated?

2.3 Performance results/figures
Are there performance metrics known (latency, throughput, ...)?

125

APPENDIX B. QUESTIONNAIRE

2.4 Persistence

What data needs to be persisted?

2.5 Security threats

Are there known security concerns that have to be addressed?

2.6 Current deployment details

In which environment is your application deployed? How many machines? What are
there capacities/specifications? What about communication between these machines?

3 Detailed description

Describe your application in detail (the future plans).

3.1 Architecture

Network topology/architecture and complete specifications of the devices over which
these are planned to execute in the future. Identify concrete technologies that are rele-
vant to achieve a solution (either from the Lightkone consortium or external). Please add
a principal network diagram to give a basic understanding of the actors, system compo-
nents such as mobile devices or database servers and the communication patterns between
them. I.e. synchronous calls, messaging, 1 or 2–way state synchronization.

3.2 Edge computing requirement

Why is Edge Computing required? Why would a Cloud solution not be sufficient?

4 Data model

Please provide a complete description of the data being manipulated by the application.
What data objects are imutable (i.e, their value will never change since their creation)
and what data objects are mutable? Are there dependencies between immutable data and
mutable data? If so, identify these dependencies.

If your case study includes mutable data, please explain if transactions are required
to manipulate this state (transactions in the sense of ACID properties – Atomicity, Con-
sistency, Integrity, and Durability).

Is there any need for updating more than one object atomically in your application?
Please describe the example and explain why is it important for updates to be applied
atomically.

LightKone D2.1(v1.0), September 30, 2017, Page 126

APPENDIX B. QUESTIONNAIRE

5 Detailed description of the computations
Provide a complete description of the computations that are required in the context of the
application, with emphasis on computations to be executed in the edge.

Additionally, provide information about the data flow patterns of all applications, and
also which parts of the system need which data (if possible)

6 Conflicting operations and invariants
Can you identify conflicting operations that can lead your application to evolve into an
incorrect state? For instance, are there concurrent updates that without synchronization
might break invariants?

If so, what are these invariants in the application state? For each invariant identified,
should conflict or invariant violations be prohibited, or is it OK to correct them after the
fact? Do invariants need to be true at all times or only eventually? If invariant violations
are to be forbidden (instead of repaired), how important is for all replicas to be able to
execute operation that might lead to invariant violation?

7 Divergence and divergence control
What is the expected latency? Is there an “offline” mode? Are there limits to the degree
of temporary divergence allowed?

Would it be interesting to know how divergent is the data you are reading (from the
data in other replicas/data centers)? Please give examples. If yes:

• What type of information would be useful - number of operations not observed,
difference in the value observed, how long your data is old, some other?

• Could you live with a probabilistic value (e.g. there is 90% chance that you are not
missing more than 3 operations)?

Would it be interesting to include a mechanism that guarantees that data is not diver-
gent by more than some amount? If yes:

• What type of information would be useful - number of operations not observed,
difference in the value observed, how long your data is old, some other?

• What price would you be ready to pay for it - increased latency on reads, increased
latency on writes?

• Could you live with a probabilistic value?

8 Network partitions
Does natural partitions exist in the system, such that global consistency can be lowered
while upholding a higher degree of consistency the partitions? For instance, if all data in

LightKone D2.1(v1.0), September 30, 2017, Page 127

APPENDIX B. QUESTIONNAIRE

a partition is handled by the same data center, then it can benefit from reduced latency
between members of the same partition, and thus increased consistency.

Another example: Tiered data–handoff, where a hierarchy is made of nodes on dif-
ferent levels.

9 Operational requirements
Is your application running under EC? For availability? Performance? Scalability?
Where is the application running: on client-controlled mobile machines or in the in-
frastructure? If the latter, in a small number of data centers, or in large numbers of DCs?

What types of machines (capacity, power, ...) and through which network do they
communicate. Please provide as concrete specifications for hardware as possible.

How many replicas: tens? thousands? millions? Full replication or partial replica-
tion?

What is the expected number of objects: thousands? millions? billions? Size of
each object? size of the data: bytes? megabytes? gigabytes? Rate of growth? Is the
object universe partitioned (i.e, composed of discrete, independent databases that can be
managed/replicated independently) or (one single big database)?

10 Security requirements
Access control? at what granularity (object, operations, operations arguments, users)?
Information flow control? at what granularity? Auditing and rolling back offending
updates a posteriori?

11 Data protection requirements
Is there sensitive data being manipulated by your use case? Can data identify users?
Reveal private information about users? Which portion of the data model fits in these
cases?

12 Implementation
What programming stack are you using/planning to use? E.g. Programming language,
backends, communication libraries, serialization formats. Is it open source, available for
Lightkone partners, closed source?

LightKone D2.1(v1.0), September 30, 2017, Page 128

	Executive Summary
	Introduction
	Motivation for the use cases
	The importance of crosscutting topics
	Requirements elicitation and the questionnaire

	UPC
	Coordination between servers for the Guifi.net monitoring system
	Common background for the Guifi.net use cases
	Guifi community network environment
	Edge computing in Guifi.net
	Current monitoring system for Guifi.net nodes

	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats
	Current deployment details

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Data storage service for the Guifi.net monitoring system
	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats
	Current deployment details

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Service provision support for the Cloudy platform
	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats
	Current deployment details

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Scality
	Pre-indexing at the edge
	Overview of the use case
	Current development
	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Lambda functions at the edge
	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data Protection requirements
	Implementation

	S3 local cache of central data
	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats
	Current deployment details

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Stritzinger
	No-Stop RFID
	Overview of the use case
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats
	Current deployment details

	Detailed description
	Conflicting operations
	Invariants and other rules that govern the system
	Expected performance
	Persistence
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations
	Divergence and divergence control
	Network partitions
	Operational requirements
	Data protection requirements
	Implementation

	Smart metering gateways
	Overview of the use case
	Current development
	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Meters to gateways
	Gateways to cloud
	Gateway to gateway

	Data protection requirements
	Implementation
	Extension: Swarm of small satellites
	Current development
	Detailed description
	Data model
	Conflicting operations and invariants
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Gluk
	Agriculture sensing analytics
	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results
	Security threats
	Current deployment details

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

	Data Protection
	Introduction
	EU legal framework for the right to data protection
	Directive 95/46/EC
	EU General Data Protection Regulation (GDPR)
	Increased territorial scope (extra-territorial applicability)
	Penalties
	Consent
	Data subject rights
	Breach notification
	Right to access
	Right to be forgotten
	Data portability

	Privacy by design
	Data protection officers
	Data protection per use case

	Security Analysis
	Introduction
	Security versus data protection
	Methodology

	Coordination between servers and data storage for the Guifi.net monitoring system
	Service provision support for the Cloudy platform
	Pre-indexing at the edge
	Lambda functions at the edge
	S3 local cache of central data
	No-Stop RFID
	Smart metering gateway
	Agriculture sensing analytics

	Deep Learning
	Introduction to deep learning
	Three-step design process
	Why is DL successful now and not before?
	Introduction to the design of a deep neural network
	AlexNet: a practical deep neural network
	Deep learning compared to other disciplines

	Relevance of deep learning to LightKone use cases
	Computation model requirements for deep learning
	Generalized convergence property
	Training on edge networks
	Data protection and anonymization

	Bibliography
	List of Acronyms
	Questionnaire
	Overview of the use case
	Current development
	Conflicting operations
	Invariants that exist in the application state
	Performance results/figures
	Persistence
	Security threats
	Current deployment details

	Detailed description
	Architecture
	Edge computing requirement

	Data model
	Detailed description of the computations
	Conflicting operations and invariants
	Divergence and divergence control
	Network partitions
	Operational requirements
	Security requirements
	Data protection requirements
	Implementation

